scholarly journals Flow topology and alignments of scalar gradients and vorticity in turbulent spray flames: A Direct Numerical Simulation analysis

Fuel ◽  
2016 ◽  
Vol 184 ◽  
pp. 922-947 ◽  
Author(s):  
Daniel Wacks ◽  
Nilanjan Chakraborty
2018 ◽  
Vol 857 ◽  
pp. 270-290 ◽  
Author(s):  
Josef Hasslberger ◽  
Markus Klein ◽  
Nilanjan Chakraborty

This paper presents a detailed investigation of flow topologies in bubble-induced two-phase turbulence. Two freely moving and deforming air bubbles that have been suspended in liquid water under counterflow conditions have been considered for this analysis. The direct numerical simulation data considered here are based on the one-fluid formulation of the two-phase flow governing equations. To study the development of coherent structures, a local flow topology analysis is performed. Using the invariants of the velocity gradient tensor, all possible small-scale flow structures can be categorized into two nodal and two focal topologies for incompressible turbulent flows. The volume fraction of focal topologies in the gaseous phase is consistently higher than in the surrounding liquid phase. This observation has been argued to be linked to a strong vorticity production at the regions of simultaneous high fluid velocity and high interface curvature. Depending on the regime (steady/laminar or unsteady/turbulent), additional effects related to the density and viscosity jump at the interface influence the behaviour. The analysis also points to a specific term of the vorticity transport equation as being responsible for the induction of vortical motion at the interface. Besides the known mechanisms, this term, related to surface tension and gradients of interface curvature, represents another potential source of turbulence production that lends itself to further investigation.


2018 ◽  
Vol 859 ◽  
pp. 819-838 ◽  
Author(s):  
Josef Hasslberger ◽  
Sebastian Ketterl ◽  
Markus Klein ◽  
Nilanjan Chakraborty

The local flow topology analysis of the primary atomization of liquid jets has been conducted using the invariants of the velocity-gradient tensor. All possible small-scale flow structures are categorized into two focal and two nodal topologies for incompressible flows in both liquid and gaseous phases. The underlying direct numerical simulation database was generated by the one-fluid formulation of the two-phase flow governing equations including a high-fidelity volume-of-fluid method for accurate interface propagation. The ratio of liquid-to-gas fluid properties corresponds to a diesel jet exhausting into air. Variation of the inflow-based Reynolds number as well as Weber number showed that both these non-dimensional numbers play a pivotal role in determining the nature of the jet break-up, but the flow topology behaviour appears to be dominated by the Reynolds number. Furthermore, the flow dynamics in the gaseous phase is generally less homogeneous than in the liquid phase because some flow regions resemble a laminar-to-turbulent transition state rather than fully developed turbulence. Two theoretical models are proposed to estimate the topology volume fractions and to describe the size distribution of the flow structures, respectively. In the latter case, a simple power law seems to be a reasonable approximation of the measured topology spectrum. According to that observation, only the integral turbulent length scale would be required as an input for the a priori prediction of the topology size spectrum.


Sign in / Sign up

Export Citation Format

Share Document