interface curvature
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Blake Wilson ◽  
Steven Nielsen ◽  
Jaona Randrianalisoa ◽  
Zhenpeng Qin

Plasmonic gold nanoparticles (AuNPs) can convert laser irradiation into thermal energy and act as nano heaters in avariety of applications. Although the AuNP-water interface is an essential part of the plasmonic heating process,there is a lack of mechanistic understanding of how interface curvature and the heating itself impact interfacial heattransfer. Here, we report atomistic molecular dynamics simulations that investigate heat transfer through nanoscalegold-water interfaces. We confirmed that interfacial heat transfer is an important part of AuNP heat dissipation inAuNPs with diameter less than 100 nm, particularly for small particles with diameter≤10 nm. To account forvariations in the gold-water interaction strength reported in the literature, and to implicitly account for differentsurface functionalizations, we modeled a moderate and a poor AuNP-water wetting scenario. We found that thethermal interface conductance increases linearly with interface curvature regardless of the gold wettability, while itincreases non-linearly, or remains constant, with the applied heat flux under different wetting conditions. Our analysissuggests the curvature dependence of the interface conductance is due to the changes in interfacial water adsorption,while the temperature dependence is caused by heat-induced shifts in the distribution of water vibrational states.Our study advances the current understanding of interface thermal conductance for a broad range of applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Joshua McCraney ◽  
Mark Weislogel ◽  
Paul Steen

AbstractIn this work, we analyze liquid drains from containers in effective zero-g conditions aboard the International Space Station (ISS). The efficient draining of capillary fluids from conduits, containers, and media is critical in particular to high-value liquid samples such as minuscule biofluidics processing on earth and enormous cryogenic fuels management aboard spacecraft. The amount and rate of liquid drained can be of key concern. In the absence of strong gravitational effects, system geometry, and liquid wetting dominate capillary fluidic behavior. During the years 2010–2015, NASA conducted a series of handheld experiments aboard the ISS to observe “large” length scale capillary fluidic phenomena in a variety of irregular containers with interior corners. In this work, we focus on particular single exit port draining flows from such containers and digitize hours of archived NASA video records to quantify transient interface profiles and volumetric flow rates. These data are immediately useful for theoretical and numerical model benchmarks. We demonstrate this by making comparisons to lubrication models for slender flows in simplified geometries which show variable agreement with the data, in part validating certain geometry-dependent dynamical interface curvature boundary conditions while invalidating others. We further compare the data for the draining of complex vane networks and identify the limits of the current theory. All analyzed data is made available to the public as MATLAB files, as detailed within.


2021 ◽  
Vol 929 ◽  
Author(s):  
Qiang Gao ◽  
Grant B. Deane ◽  
Lian Shen

Air filaments and cavities in plunging breaking waves, generically cylinders, produce bubbles through an interface instability. The effects of gravity, surface tension and surface curvature on cylinder breakup are explored. A generalized dispersion relation is obtained that spans the Rayleigh–Taylor and Plateau–Rayleigh instabilities as cylinder radius varies. The analysis provides insight into the role of surface tension in the formation of bubbles from filaments and cavities. Small filaments break up into bubbles through a Plateau–Rayleigh instability driven through the action of surface tension. Large air cavities produce bubbles through a Rayleigh–Taylor instability driven by gravity and moderated by surface tension, which has a stabilizing effect. Surface tension, interface curvature and gravity are all important for cases between these two extremes. Predicted unstable mode wavenumber and bubble size show good agreement with direct numerical simulations of plunging breaking waves and air cylinders.


Ceramist ◽  
2021 ◽  
Vol 24 (3) ◽  
pp. 260-272
Author(s):  
Kyoung-Seok Moon

The sintering process transported the atoms in the materials by decreasing the total interface energy. The microstructure changes as a result of grain growth and densification under the capillary driving force due to the interface curvature among grains. The grain growth rate is expressed as the product of the interface mobility and the driving force. According to grain growth theories, the mobility of the interface governed by diffusion control is constant but interface mobility is nonlinear when the movement of an interface is governed by interface reaction. As the growth rate is nonlinear for the regime of interface reaction control, the grain growth is nonstationary with annealing time. The microstructure can be controlled by changing the growth rate of an individual grain with the correlation between the maximum driving force and the critical driving force for appreciable growth. The present paper discusses applications of the principle in the fabrication of dielectric and magnetic ceramic materials.


Author(s):  
P. K. Galenko ◽  
A. Salhoumi

Using the model of fast phase transitions and previously reported equation of the Gibbs–Thomson-type, we develop an equation for the anisotropic interface motion of the Herring–Gibbs–Thomson-type. The derived equation takes the form of a hodograph equation and in its particular case describes motion by mean interface curvature, the relationship ‘velocity—Gibbs free energy’, Klein–Gordon and Born–Infeld equations related to the anisotropic propagation of various interfaces. Comparison of the present model predictions with the molecular-dynamics simulation data on nickel crystal growth (obtained by Jeffrey J. Hoyt et al. and published in Acta Mater. 47 (1999) 3181) confirms the validity of the derived hodograph equation as applicable to the slow and fast modes of interface propagation. This article is part of the theme issue ‘Transport phenomena in complex systems (part 1)’.


Sign in / Sign up

Export Citation Format

Share Document