Peculiarities of the production of graphene oxides with controlled properties from industrial coal liquids

Fuel ◽  
2017 ◽  
Vol 203 ◽  
pp. 253-260 ◽  
Author(s):  
Laura Fernández-García ◽  
Patricia Álvarez ◽  
Ana M. Pérez-Mas ◽  
Clara Blanco ◽  
Ricardo Santamaría ◽  
...  
Keyword(s):  
2015 ◽  
Vol E98.C (2) ◽  
pp. 127-128 ◽  
Author(s):  
Asami OHTAKE ◽  
Seiko UCHINO ◽  
Kunio AKEDO ◽  
Masanao ERA ◽  
Koichi SAKAGUCHI

2021 ◽  
Vol 297 ◽  
pp. 122027
Author(s):  
Xianglin Yu ◽  
Ruixue Li ◽  
Xinyu Hu ◽  
Ren He ◽  
Kehui Xue ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1740 ◽  
Author(s):  
Selestina Gorgieva ◽  
Azra Osmić ◽  
Silvo Hribernik ◽  
Mojca Božič ◽  
Jurij Svete ◽  
...  

Herein, we prepared a series of nanocomposite membranes based on chitosan (CS) and three compositionally and structurally different N-doped graphene derivatives. Two-dimensional (2D) and quasi 1D N-doped reduced graphene oxides (N-rGO) and nanoribbons (N-rGONRs), as well as 3D porous N-doped graphitic polyenaminone particles (N-pEAO), were synthesized and characterized fully to confirm their graphitic structure, morphology, and nitrogen (pyridinic, pyrrolic, and quaternary or graphitic) group contents. The largest (0.07%) loading of N-doped graphene derivatives impacted the morphology of the CS membrane significantly, reducing the crystallinity, tensile properties, and the KOH uptake, and increasing (by almost 10-fold) the ethanol permeability. Within direct alkaline ethanol test cells, it was found that CS/N rGONRs (0.07 %) membrane (Pmax. = 3.7 mWcm−2) outperformed the pristine CS membrane significantly (Pmax. = 2.2 mWcm−2), suggesting the potential of the newly proposed membranes for application in direct ethanol fuel cells.


Fuel ◽  
1988 ◽  
Vol 67 (9) ◽  
pp. 1197-1200 ◽  
Author(s):  
María T. Martinez ◽  
JoséL. Miranda ◽  
Roberto Juan

2013 ◽  
Vol 42 (8) ◽  
pp. 924-926 ◽  
Author(s):  
Michio Koinuma ◽  
Hikaru Tateishi ◽  
Kazuto Hatakeyama ◽  
Shinsuke Miyamoto ◽  
Chikako Ogata ◽  
...  

2011 ◽  
Vol 287-290 ◽  
pp. 539-543 ◽  
Author(s):  
Wen Shi Ma ◽  
Jun Wen Zhou ◽  
Xiao Dan Lin

Graphene oxide was prepared through Hummers' method,then different reduced graphenes were prepared via reduction of graphene oxide with hydrazine hydrate for 1h、12h and 24h. X-ray photoelectron spectroscopy (XPS) was used for the characterization of graphene oxide and the reduced graphenes. The variation of the contents of carbon in carbon and oxygen functional groups and chemical compositions of graphene oxides were investigated through analysis the content of different carbon atoms in different reduced graphenes. The results showed that the reduction reaction was very fast in the first 1 h, the content of total oxygen bonded carbon atoms decreased from 83.6% to 22.1%, and then after the reduction rate became very slow. After 12h, the content of total oxygen bonded carbon atom is 19.56%, only 2.54% lower than that of 1h’s. At the same time, C-N was introduced in the graphene oxides; this increased the stereo-hindrance for hydrazine hydrate attacking the C-Oxygen groups, thus reduced the reduction rate. After reduction for 24h, there still exists 16.4% oxygen bonded carbon atoms and the total conversion ratio of graphene approaches 70%.


Carbon ◽  
2014 ◽  
Vol 77 ◽  
pp. 366-378 ◽  
Author(s):  
Min-Young Lim ◽  
Hee Joong Kim ◽  
Seung Jo Baek ◽  
Ka Young Kim ◽  
Sang-Soo Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document