Numerical simulation of ignition delay time for petroleum and renewable fuels

Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121345
Author(s):  
Hao Lee ◽  
Anurag Dahiya ◽  
Kuang C. Lin ◽  
Xiang-Xin Chen ◽  
Wei-Cheng Wang
2013 ◽  
Vol 705 ◽  
pp. 436-441
Author(s):  
Jia Chen Chen ◽  
Qi Zhang ◽  
Qiu Ju Ma

Numerical simulation was used to obtain the transient concentration of dust in the process of dispersion in a closed vessel in this work. Through the transient concentration of dust obtained by numerical results, the best ignition delay time can be evaluated. For the 5 L vessel and the hemispherical injection nozzle and under the blow pressure of 0.5 MPa, the ignition delay time should be 50-100 ms. Numerical results agree with the data obtained in the experiments under the same condition. It is difficult that dust concentration in the process of dispersion reaches absolutely uniform everywhere in the closed vessel.


2019 ◽  
Vol 206 ◽  
pp. 400-410 ◽  
Author(s):  
Hesameddin Fatehi ◽  
Wubin Weng ◽  
Mário Costa ◽  
Zhongshan Li ◽  
Miriam Rabaçal ◽  
...  

Author(s):  
A. G. Korotkikh ◽  
◽  
V. A. Arkhipov ◽  
I. V. Sorokin ◽  
E. A. Selikhova ◽  
...  

The paper presents the results of ignition and thermal behavior for samples of high-energy materials (HEM) based on ammonium perchlorate (AP) and ammonium nitrate (AN), active binder and powders of Al, B, AlB2, and TiB2. A CO2 laser with a heat flux density range of 90-200 W/cm2 was used for studies of ignition. The activation energy and characteristics of ignition for the HEM samples were determined. Also, the ignition delay time and the surface temperature of the reaction layer during the heating and ignition for the HEM samples were determined. It was found that the complete replacement of micron-sized aluminum powder by amorphous boron in a HEM sample leads to a considerable decrease in the ignition delay time by a factor of 2.2-2.8 at the same heat flux density due to high chemical activity and the difference in the oxidation mechanisms of boron particles. The use of aluminum diboride in a HEM sample allows one to reduce the ignition delay time of a HEM sample by a factor of 1.7-2.2. The quasi-stationary ignition temperature is the same for the AlB2-based and AlB12-based HEM samples.


Author(s):  
Haoqiang Sheng ◽  
Xiaobin Huang ◽  
Zhijia Chen ◽  
Zhengchuang Zhao ◽  
Hong Liu

2021 ◽  
Vol 230 ◽  
pp. 111426
Author(s):  
Saja Almohammadi ◽  
Mireille Hantouche ◽  
Olivier P. Le Maître ◽  
Omar M. Knio

2021 ◽  
Vol 223 ◽  
pp. 98-109
Author(s):  
Khaiyom Hakimov ◽  
Farhan Arafin ◽  
Khalid Aljohani ◽  
Khalil Djebbi ◽  
Erik Ninnemann ◽  
...  

2013 ◽  
Vol 699 ◽  
pp. 111-118
Author(s):  
Rui Shi ◽  
Chang Hui Wang ◽  
Yan Nan Chang

Based on GRI3.0, we study the main chemical kinetics process about reactions of singlet oxygen O2(a1Δg) and ozone O3 with methane-air combustion products, inherit and further develop research in chemical kinetics process with enhancement effects on methane-air mixed combustion by these two molecules. In addition, influence of these two molecules on ignition delay time and flame speed of laminar mixture are considered in our numerical simulation research. This study validates the calculation of this model which cotains these two active molecules by using experimental data of ignition delay time and the speed of laminar flame propagation. In CH4-air mixing laminar combustion under fuel-lean condition(ф=0.5), flame speed will be increased, and singlet oxygen with 10% of mole fraction increases it by 80.34%, while ozone with 10% mole fraction increase it by 127.96%. It mainly because active atoms and groups(O, H, OH, CH3, CH2O, CH3O, etc) will be increased a lot after adding active molecules in the initial stage, and chain reaction be reacted greatly, inducing shortening of reaction time and accelerating of flame speed. Under fuel rich(ф=1.5), accelerating of flame speed will be weakened slightly, singlet oxygen with 10% in molecular oxygen increase it by 48.93%, while ozone with 10% increase it by 70.25%.


Sign in / Sign up

Export Citation Format

Share Document