Effects of variable valve timing on the air flow parameters in an electromechanical valve mechanism – A cfd study

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121956
Author(s):  
Usame Demir ◽  
Gokhan Coskun ◽  
Hakan S. Soyhan ◽  
Ali Turkcan ◽  
Ertan Alptekin ◽  
...  
2005 ◽  
Author(s):  
Bin Wu ◽  
Zoran Filipi ◽  
Denise M. Kramer ◽  
Gregory L. Ohl ◽  
Michael J. Prucka ◽  
...  

Author(s):  
Jason S. Souder ◽  
Parag Mehresh ◽  
J. Karl Hedrick ◽  
Robert W. Dibble

Homogeneous charge compression ignition (HCCI) engines are a promising engine technology due to their low emissions and high efficiencies. Controlling the combustion timing is one of the significant challenges to practical HCCI engine implementations. In a spark-ignited engine, the combustion timing is controlled by the spark timing. In a Diesel engine, the timing of the direct fuel injection controls the combustion timing. HCCI engines lack such direct in-cylinder mechanisms. Many actuation methods for affecting the combustion timing have been proposed. These include intake air heating, variable valve timing, variable compression ratios, and exhaust throttling. On a multi-cylinder engine, the combustion timing may have to be adjusted on each cylinder independently. However, the cylinders are coupled through the intake and exhaust manifolds. For some of the proposed actuation methods, affecting the combustion timing on one cylinder influences the combustion timing of the other cylinders. In order to implement one of these actuation methods on a multi-cylinder engine, the engine controller must account for the cylinder-to-cylinder coupling effects. A multi-cylinder HCCI engine model for use in the control design process is presented. The model is comprehensive enough to capture the cylinder-to-cylinder coupling effects, yet simple enough for the rapid simulations required by the control design process. Although the model could be used for controller synthesis, the model is most useful as a starting point for generating a reduced-order model, or as a plant model for evaluating potential controllers. Specifically, the model includes the dynamics for affecting the combustion timing through exhaust throttling. The model is readily applicable to many of the other actuation methods, such as variable valve timing. Experimental results validating the model are also presented.


2011 ◽  
Vol 264-265 ◽  
pp. 1719-1724 ◽  
Author(s):  
A.K.M. Mohiuddin ◽  
Md. Ataur Rahman ◽  
Yap Haw Shin

This paper aims to demonstrate the effectiveness of Multi-Objective Genetic Algorithm Optimization and its practical application on the automobile engine valve timing where the variation of performance parameters required for finest tuning to obtain the optimal engine performances. The primary concern is to acquire the clear picture of the implementation of Multi-Objective Genetic Algorithm and the essential of variable valve timing effects on the engine performances in various engine speeds. Majority of the research works in this project were in CAE software environment and method to implement optimization to 1D engine simulation. The paper conducts robust design optimization of CAMPRO 1.6L (S4PH) engine valve timing at various engine speeds using multiobjective genetic algorithm (MOGA) for the future variable valve timing (VVT) system research and development. This paper involves engine modelling in 1D software simulation environment, GT-Power. The GT-Power model is run simultaneously with mode Frontier to perform multiobjective optimization.


2012 ◽  
Author(s):  
Takahiro Miura ◽  
Shunichi Aoyama ◽  
Kaoru Onogawa ◽  
Takaya Fujia ◽  
Tetsuro Murata ◽  
...  

Author(s):  
Akane Ishizuka ◽  
Narimasa Ueda ◽  
Yoshitaka Morimoto ◽  
Akio Hayashi ◽  
Yoshiyuki Kaneko ◽  
...  

Abstract Since shifting to electric vehicles as a countermeasure against global warming is not always easy to complete, the hybrid car has been considered as another possible solution. However, based on the calculation of total CO2 emissions, all hybrid cars which will constitute 90% of all cars are expected to be equipped with an internal combustion engine even after 2030. Therefore, further efficiency improvement of the internal combustion engine is necessary. One of the key factors is the variable valve timing and variable lift with the 3D cam mechanism. Since conventional technology uses a complicated link mechanism and servo motor control, this leads a problem to set into small cars or motorcycles because they cannot afford to install the variable valve timing and variable lift with cam mechanism. To solve this problem, a cam shape with a three-dimensional curved surface has been proposed. In order to create this shape, the machining method for non-axisymmetric curved surface turning (NACS-Turning) is required. To build the new system, our research group has proposed a new machining method using a driven type rotary tool and a linear motor driven moving table to enable to achieve NACS-Turning. In this new system, a new tool rotation axis (B axis) is adopted to synchronize its rotational position with the rotational position of the spindle (C axis) holding the workpiece, the X1-, X2-, and Z-Axis positions in total. In this paper, the new hardware configuration is proposed to overcome the present machining accuracy.


Sign in / Sign up

Export Citation Format

Share Document