locking mechanism
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 105)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
Michal Křížek ◽  
Vesselin G. Gueorguiev ◽  
André Maeder

Recently it was found from Cassini data that the mean recession speed of Titan from Saturn is v = 11.3 ± 2.0 cm/yr which corresponds to a tidal quality factor of Saturn Q ≈ 100 while the standard estimate yields Q ≥ 6 · 104 . It was assumed that such a large speed v is due to a resonance locking mechanism of five inner mid-sized moons of Saturn. In this paper, we show that an essential part of v may come from a local Hubble expansion, where the Hubble-Lemaˆıtre constant H0 recalculated to the Saturn-Titan distance D is 8.15 cm/(yrD). Our hypothesis is based on many other observations showing a slight expansion of the Solar system and also of our Galaxy at a rate comparable with H0. We demonstrate that the large disproportion in estimating the Q factor can be just caused by the local expansion effect. [Accepted for publication in "Gravitation and Cosmology". The paper is to appear in Vol. 28, Issue 2 (2022) of the journal Gravitation and Cosmology.]


2022 ◽  
Vol 6 (1) ◽  
pp. 100-108
Author(s):  
Husna Amiliansyah ◽  
Mia Galina ◽  
Joni Welman

Smartphone technology can be applied not only to establish communication needs but also to support other purposes. One of them is related to personal safety and security functions. It is undeniable that criminal acts can occur anytime and anywhere. Even in a private or residential area, theft could happen. Smartphone and sensor technology can be used as a solution to encounter this problem. In this case, it can be utilized to improve the security control system of the gate or garage door at home. This research presents a prototype of a gate and garage door control and security system that operates through an application on an android smartphone. The application of HC-05 Bluetooth is used to send signals from the smartphone to the Arduino Uno microcontroller, while the micro servo acts as a locking mechanism on the gate itself. The buzzer function is presented to notify homeowners when the gate or garage door is open for more than 15 seconds. This prototype can control gates and garage doors with an average connection time of only about 5 seconds. Thus, this prototype is feasible to use as an alternative to control and improve housing security systems.


2021 ◽  
Author(s):  
Hesham Hussein ◽  
Shady Badran

Abstract The HFLs for the Zohr Phase 1 project contains a cobra head at each end that incorporates the female couplers and the locking mechanism. Beginning in February 2020, and with the most recent incident recorded in September 2020, a total of 4 supplied HFL reaction drive shafts (RDS) failed subsea, resulting in partial separation of the HFL cobra heads from their respective fixed stabplates with a loss of hydraulic supply pressure and subsequent automatic well shut ins. HFL failures occurred on both the XT and HIPPS side of the HFLs on 3 different well sites. A further RDS tested at the laboratory from the UTA end of an HFL showed signs of microscopic cracking consistent with the failed specimens suggesting it may have had the potential to lead to a failure in the future. The failed HFLs were retrieved and returned onshore, the HFL locking mechanism was stripped down to gain access to the failed ends of the RDS and a visual inspection was performed. The initial inspection after partial disassembly to reveal the inside of the HFL locking mechanism identified that the RDS had completely failed at a location on the threaded portion of the RDS. Surface deposits were collected from each probe surfaces and analysed using scanning electron microscopy (SEM), together with energy- dispersive X-ray (EDX). A piece 10mm long was taken from each of the four probes for quantitative chemical analysis. Standard tensile and Charpy V-notch impact and Vickers hardness surveys have been conducted. Each of the failed probe exhibited an intergranular fracture surface morphology. This was confirmed through metallography/EBSD. No single initiation site was located on fracture surfaces, although some regions showed a mixed fractographic morphology, with some small areas of micro-void coalescence. Secondary intergranular cracking and corrosion was apparent at various locations, in each of the failed probes, including in thread roots, in samples 183 and 188, and just above the thread, in sample 052. These observations points towards an environmentally assisted cracking mechanism (i.e. stress corrosion cracking). Metallography revealed two layers within surface films, both in cracks and on the fracture surface: an inner layer, rich in nickel, sulphur and aluminium, and an outer, rich in copper and sulphur. Mechanical testing and chemical analysis revealed consistent results across the probes. The probe material was specified as Nibron Special (CuNi14Al3/DIN 2.1504) with a size of 2inch. Would be challenging to get the full root cause of using this material for subsea applications as it is resistant to seawater. Another factor contributed allows risk of material failure which should be eliminated for all subsea industry or taken into consideration to avoid further failures.


2021 ◽  
Vol 2021 (4) ◽  
pp. 56-65
Author(s):  
S.V. Khoroshylov ◽  
◽  
V.K. Shamakhanov ◽  
V.V. Vasyliev ◽  
◽  
...  

The aim of the article is to model the processes of centrifugal deployment of a three-section boom and preliminary analyze the feasibility of this deployment method for an Earth remote sensing (ERS) minisatellite (MS). During the research, methods of theoretical mechanics, multibody dynamics, control theory, and computer modeling were used. Centrifugal deployment of multi-section booms have been successfully used on spin stabilized satellites, but not on ERS satellites, which have other features of operation and require additional studies. The main part of the MS is a platform to which a transformable antenna is attached by means of a transformable boom. Before deployment, the stowed boom and antenna are attached to the MS platform. The boom sections are connected by joints with one rotational degree of freedom and deployed sequentially due to centrifugal forces when the MS rotates in the required direction. Each of the boom joints has a locking mechanism that latches when a predetermined deploy angle is reached. To model the processes of the boom deployment, the MS is presented as a system of connected bodies, where the platform and the stowed antenna are absolutely rigid bodies, and the boom consists of three flexible beams of a tubular cross-section. The differential equations of the MS dynamics during the deployment are obtained using the Lagrangian formalism, which are supplemented by algebraic equations describing the constraints from the joints. The scenarios of the boom deployment with a constant control torque and a constant angular velocity of the MS are considered. These scenarios are simulated, and estimates of the control actions needed to ensure full deployment of the boom and the stabilization of the MS after latching of the joints are calculated. Dependences of variations of the loads on the boom structure during deployment are obtained. The simulation results allow us to conclude that it is feasible to implement the method of the boom centrifugal deployment for the MS, which can perform fast rotations about the three axes of the body reference frame. Implementation of this method allows designers to reduce mass of the MS because it does not require any servo drives in the boom deployment system.


2021 ◽  
Author(s):  
Zhe Zhang ◽  
Jianmin Liu ◽  
Chengchang He

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Phuoc Thien Phan ◽  
Trung Thien Hoang ◽  
Mai Thanh Thai ◽  
Harrison Low ◽  
James Davies ◽  
...  

AbstractWound closure with surgical sutures is a critical challenge for flexible endoscopic surgeries. Substantial efforts have been introduced to develop functional and smart surgical sutures to either monitor wound conditions or ease the complexity of knot tying. Although research interests in smart sutures by soft robotic technologies have emerged for years, it is challenging to develop a soft robotic structure that possesses a similar physical structure as conventional sutures while offering a self-tightening knot or anchor to close the wound. This paper introduces a new concept of smart sutures that can be programmed to achieve desired and uniform tension distribution while offering self-tightening knots or automatically deploying secured anchors. The core technology is a soft hydraulic artificial muscle that can be elongated and contracted under applied fluid pressure. Each suture is equipped with a pressure locking mechanism to hold its temporary elongated state and to induce self-shrinking ability. The puncturing and holding force for the smart sutures with anchors are examined. Ex-vivo experiments on fresh porcine stomach and colon demonstrate the usefulness of the new smart sutures. The new approaches are expected to pave the way for the further development of smart sutures that will benefit research, training, and commercialization in the surgical field.


2021 ◽  
Vol 12 (2) ◽  
pp. 971-982
Author(s):  
Jiabin Yang ◽  
Xiaoning Li

Abstract. In order to meet the application requirements of fast-moving, accurate positioning, and low cost, a new type of pneumatic electric hybrid actuator was developed with a positioning accuracy of 0.01 mm. It was found that the velocity fluctuation would occur in the process of driving switching due to the “stop then restart” strategy, resulting in stumbling when positioning. To solve this problem, the basic characteristics of the drive switching mechanism were tested and analyzed. A driving switching strategy called “relay and run” was proposed based on the response characteristics of the locking mechanism in the braking stage and the starting characteristics of the motor. The uniform acceleration was controlled by the motor drive to compensate for the velocity loss so that the overall velocity was slowly reduced. The control model was established, and the experiments were conducted. The results showed that the relay and run switching strategy can eliminate the velocity fluctuation caused by the stop then restart strategy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiannan Gao ◽  
Maria Antonietta Vincenti ◽  
Jesse Frantz ◽  
Anthony Clabeau ◽  
Xingdu Qiao ◽  
...  

AbstractChalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an As2S3-based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal. Due to the phase locking, the inhomogeneous component co-propagates with the pump pulse and encounters the same effective dispersion as the infrared pump, and thus experiences little or no absorption, consequently opening previously unexploited spectral range for chalcogenide glass science and applications, despite the presence of strong material absorption in this range.


Sign in / Sign up

Export Citation Format

Share Document