Numerical assessment of functionally graded tungsten/steel joints for divertor applications

2011 ◽  
Vol 86 (2-3) ◽  
pp. 220-226 ◽  
Author(s):  
T. Weber ◽  
J. Aktaa
2020 ◽  
Vol 261 ◽  
pp. 126875 ◽  
Author(s):  
Jiajia Zhang ◽  
Donghua Xie ◽  
Qishou Li ◽  
Chunli Jiang ◽  
Qiang Li

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kamal Kishore Joshi ◽  
Vishesh Ranjan Kar

Purpose The purpose of this study is the comprehensive numerical assessment of multidirectional (1D/2D/3D) functionally graded composite panel structures with different material gradation patterns and degrees of material heterogeneity. Here, deformation characteristics are obtained under different loading and support conditions. Design/methodology/approach The finite element solutions of multidirectional functionally graded composite panels subjected to uniform and sinusoidal transverse loads are presented under different support conditions. Here, different functionally graded composites, such as unidirectional (1D) and multidirectional (2D/3D), are considered by distributing constituent materials in one, two and three directions, respectively, using single and multivariable power-law functions. A constitutive model with fully spatial-dependent elastic stiffness is developed, whereas the kinematics of the present structure is defined using equivalent single-layer higher-order theory. The weak form, based on the principle of virtual work, is established and solved consequently using isoparametric finite element approximations via quadrilateral Lagrangian elements. Findings The appropriate mesh-refinement process is carried out to achieve the mesh convergence; whereas, the correctness of proposed heterogeneous model is confirmed through a verification test. The comprehensive numerical assessment of multidirectional functionally graded panels under various loading and support conditions depicts the importance of degree of material heterogeneity with different gradation patterns and volume-fraction exponents. Originality/value A comprehensive analysis on the deformation behaviour of 1D-functionally graded materials (FGMs) (X-FGM, Y-FGM and Z-FGM), 2D-FGMs (XY-FGM, YZ-FGM and XZ-FGM) and 3D-FGM composite panels FGM structures is presented. Multifaceted heterogeneous FGMs are modelled by varying constituent materials in one, two and three directions, using power-law functions. The constitutive model of multi-directional FGM is developed using fully spatial-dependent elastic matrix and higher-order kinematics. Isoparametric 2D finite element formulation is adopted using quadrilateral Lagrangian elements to model 1D/2D/3D-FGM structures and to obtain their deflection responses under different loading and support conditions.


Author(s):  
Qingshan Cai ◽  
Wentan Zhu ◽  
Yunzhu Ma ◽  
Wensheng Liu ◽  
Xinkuan Pang ◽  
...  

2017 ◽  
Vol 263 ◽  
pp. 67-71
Author(s):  
Ali Ozturk

This paper presents how to derive Airy stress function to obtain the thermal stresses in a tungsten-steel functionally graded solid cylinder with fixed ends in elastic region. Once Airy stress function is derived, the thermal stresses can be found due to the related equations. There is uniform heat generation inside the tungsten-steel functionally graded solid cylinder. Material properties of the functionally graded cylinder (FGC) are assumed to vary radially according to a parabolic form and assumed to be independent of the temperature. These properties are yield strength, modulus of elasticity, coefficient of thermal conduction and coefficient of thermal expansion (CTE). Poisson’s ratio is assumed to be constant as an average value between tungsten’s and steel’s. Airy stress function is derived in terms of these properties to characterize the FGC entirely.


Sign in / Sign up

Export Citation Format

Share Document