A secure and scalable storage system for aggregate data in IoT

2015 ◽  
Vol 49 ◽  
pp. 133-141 ◽  
Author(s):  
Hai Jiang ◽  
Feng Shen ◽  
Su Chen ◽  
Kuan-Ching Li ◽  
Young-Sik Jeong
Author(s):  
Ahmet Artu Yıldırım ◽  
Dan Watson

Major Internet services are required to process a tremendous amount of data at real time. As we put these services under the magnifying glass, It's seen that distributed object storage systems play an important role at back-end in achieving this success. In this chapter, overall information of the current state-of –the-art storage systems are given which are used for reliable, high performance and scalable storage needs in data centers and cloud. Then, an experimental distributed object storage system (CADOS) is introduced for retrieving large data, such as hundreds of megabytes, efficiently through HTML5-enabled web browsers over big data – terabytes of data – in cloud infrastructure. The objective of the system is to minimize latency and propose a scalable storage system on the cloud using a thin RESTful web service and modern HTML5 capabilities.


Big Data ◽  
2016 ◽  
pp. 828-847
Author(s):  
Ahmet Artu Yıldırım ◽  
Dan Watson

Major Internet services are required to process a tremendous amount of data at real time. As we put these services under the magnifying glass, it's seen that distributed object storage systems play an important role at back-end in achieving this success. In this chapter, overall information of the current state-of –the-art storage systems are given which are used for reliable, high performance and scalable storage needs in data centers and cloud. Then, an experimental distributed object storage system (CADOS) is introduced for retrieving large data, such as hundreds of megabytes, efficiently through HTML5-enabled web browsers over big data – terabytes of data – in cloud infrastructure. The objective of the system is to minimize latency and propose a scalable storage system on the cloud using a thin RESTful web service and modern HTML5 capabilities.


Author(s):  
Y. Kokubo ◽  
W. H. Hardy ◽  
J. Dance ◽  
K. Jones

A color coded digital image processing is accomplished by using JEM100CX TEM SCAN and ORTEC’s LSI-11 computer based multi-channel analyzer (EEDS-II-System III) for image analysis and display. Color coding of the recorded image enables enhanced visualization of the image using mathematical techniques such as compression, gray scale expansion, gamma-processing, filtering, etc., without subjecting the sample to further electron beam irradiation once images have been stored in the memory.The powerful combination between a scanning electron microscope and computer is starting to be widely used 1) - 4) for the purpose of image processing and particle analysis. Especially, in scanning electron microscopy it is possible to get all information resulting from the interactions between the electron beam and specimen materials, by using different detectors for signals such as secondary electron, backscattered electrons, elastic scattered electrons, inelastic scattered electrons, un-scattered electrons, X-rays, etc., each of which contains specific information arising from their physical origin, study of a wide range of effects becomes possible.


Sign in / Sign up

Export Citation Format

Share Document