Potential contributions of skeletal muscle contractile dysfunction to altered biomechanics in obesity

2017 ◽  
Vol 56 ◽  
pp. 100-107 ◽  
Author(s):  
Lance M. Bollinger
2019 ◽  
Vol 126 (1) ◽  
pp. 170-182 ◽  
Author(s):  
Hiroaki Eshima ◽  
Yoshifumi Tamura ◽  
Saori Kakehi ◽  
Kyoko Nakamura ◽  
Nagomi Kurebayashi ◽  
...  

Type 2 diabetes is characterized by reduced contractile force production and increased fatigability of skeletal muscle. While the maintenance of Ca2+ homeostasis during muscle contraction is a requisite for optimal contractile function, the mechanisms underlying muscle contractile dysfunction in type 2 diabetes are unclear. Here, we investigated skeletal muscle contractile force and Ca2+ flux during contraction and pharmacological stimulation in type 2 diabetic model mice ( db/db mice). Furthermore, we investigated the effect of treadmill exercise training on muscle contractile function. In male db/db mice, muscle contractile force and peak Ca2+ levels were both lower during tetanic stimulation of the fast-twitch muscles, while Ca2+ accumulation was higher after stimulation compared with control mice. While 6 wk of exercise training did not improve glucose tolerance, exercise did improve muscle contractile dysfunction, peak Ca2+ levels, and Ca2+ accumulation following stimulation in male db/db mice. These data suggest that dysfunctional Ca2+ flux may contribute to skeletal muscle contractile dysfunction in type 2 diabetes and that exercise training may be a promising therapeutic approach for dysfunctional skeletal muscle contraction. NEW & NOTEWORTHY The purpose of this study was to examine muscle contractile function and Ca2+ regulation as well as the effect of exercise training in skeletal muscle in obese diabetic mice ( db/db). We observed impairment of muscle contractile force and Ca2+ regulation in a male type 2 diabetic animal model. These dysfunctions in muscle were improved by 6 wk of exercise training.


1990 ◽  
Vol 259 (6) ◽  
pp. H1809-H1812 ◽  
Author(s):  
D. L. Walden ◽  
H. J. McCutchan ◽  
E. G. Enquist ◽  
J. R. Schwappach ◽  
P. F. Shanley ◽  
...  

Skeletal muscles subjected to ischemia and then reperfusion develop contractile dysfunction for reasons that are unclear. We found that rats pretreated with vinblastine 4 days before study had decreased numbers of blood neutrophils and increased gastrocnemius muscle function after ischemia (3h) and reperfusion (4 h) compared with untreated rats or rats treated 4 days before study with saline. By comparison, rats pretreated with vinblastine or saline 1 day before study had increased blood neutrophils and decreased gastrocnemius muscle contractile function after ischemia-reperfusion compared with untreated rats. In addition, numbers of neutrophils in gastrocnemius muscles paralleled numbers of blood neutrophils and correlated with gastrocnemius muscle edema and contractile function after ischemia and reperfusion. The results indicate that neutrophils accumulate and may play an important role in the genesis of skeletal muscle contractile dysfunction after ischemia-reperfusion.


1998 ◽  
Vol 274 (3) ◽  
pp. C770-C779 ◽  
Author(s):  
Q. El-Dwairi ◽  
A. Comtois ◽  
Y. Guo ◽  
S. N. A. Hussain

The aims of this study were to assess the role of nitric oxide (NO) and the contribution of different NO synthase (NOS) isoforms in skeletal muscle contractile dysfunction in septic shock. Four groups of conscious rats were examined. Group 1 served as control; groups 2, 3, and 4 were injected with Escherichia coli endotoxin [lipopolysaccharide (LPS), 20 mg/kg ip] and killed after 6, 12, and 24 h, respectively. Protein expression was assessed by immunoblotting and immunostaining. LPS injection elicited a transient expression of the inducible NOS isoform, which peaked 12 h after LPS injection and disappeared within 24 h. This expression coincided with a significant increase in nitrotyrosine formation (peroxynitrite footprint). Muscle expression of the endothelial and neuronal NOS isoforms, by comparison, rose significantly and remained higher than control levels 24 h after LPS injection. In vitro measurement of muscle contractility 24 h after LPS injection showed that incubation with NOS inhibitor ( S-methyliosothiourea) restored the decline in submaximal force generation, whereas maximal muscle force remained unaffected. We conclude that NO plays a significant role in muscle contractile dysfunction in septic animals and that increased NO production is due to induction of the inducible NOS isoform and upregulation of constitutive NOS isoforms.


1974 ◽  
Vol 52 (4) ◽  
pp. 887-890 ◽  
Author(s):  
L. L. Odette ◽  
H. L. Atwood

The effect of dantrolene sodium, a muscle relaxant effective on vertebrate skeletal muscle, has been studied on the stretcher muscle of a crab (Callinectes sapidus). The drug rapidly and reversibly attenuates the muscle contractile response to direct and indirect stimulation. Neuromuscular transmission is unaffected, as are the electrical properties of the muscle membrane. It is concluded that dantrolene sodium uncouples excitation–contraction mechanisms in crustacean tonic muscle.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Chad D. Touchberry ◽  
Jessica K. Stone ◽  
Leticia S. Brotto ◽  
Marco P. Brotto ◽  
Michael J. Wacker

Sign in / Sign up

Export Citation Format

Share Document