Constraints on clinopyroxene/melt partitioning of REE, Rb, Sr, Ti, Cr, Zr, and Nb during mantle melting: First insights from direct peridotite melting experiments at 1.0 GPa

2004 ◽  
Vol 68 (23) ◽  
pp. 4949-4962 ◽  
Author(s):  
A. Dana Johnston ◽  
Brandon E. Schwab
2020 ◽  
Author(s):  
Ming-Jun Zhan ◽  
Guo-Liang Zhang ◽  
Shuai Wang

<p>Phenocrysts of olivine with high Ni, low Mn and Ca relative to global MORBs are usually attributed to a stronger role of the pyroxenite melting (Soblev et al., 2005). The Hawaiian shield stage lavas (high Si group) with high bulk-rock and olivine Ni have usually been attributed to the role recycled oceanic crust. However, the Hawaiian plume also produces lavas with Si-undersaturated alkali basalt (low Si group) and relatively low Ni, whose origin has not been well understood. In this study, we examine the role of deep carbon on the magma compositions and their influences on olivine geochemistry. Here by comparing the whole rock and olivine geochemistry data of Hawaiian high Si group basalts with Hawaiian low Si group basalts, we find that the primary magmas of the latter have relatively lower Ni but comparable concentrations of Mn and Ca. However, the high Si group basalt olivines have indistinctive partition coefficient of Ni but significantly lower Mn and Ca than those of the high Si group basalts.</p><p>The deep Earth is a large reservoir of carbon, which when participates in mantle melting would significantly influence the mantle residual minerals and melt compositions. For example, mantle melting with CO<sub>2</sub> is commonly shown to reduce SiO<sub>2</sub> in the melts. Thus, the genesis of the Si-undersaturated alkali basalts has usually been attributed to the role of CO2 (Zhang et al., 2017). The role of CO2 in the genesis of Hawaiian alkali lavas have also been predicted in previous studies. Based on the observations from Hawaiian lavas, we suggest that CO2 played a key role in lowering the partition coefficients of Mn and Ca. We have conducted high pressure-temperature melting experiments on mantle rocks with CO2, and find that CO2 has a potential influence on the partition of Ni, Mn and Ca between olivine and silicate melts, more experiments remain to be further conducted. This work was financially supported by the National Natural Science Foundation of China (91858206, 41876040).</p>


2019 ◽  
Vol 486 (1) ◽  
pp. 98-102
Author(s):  
N. M. Sushchevskaya ◽  
B. V. Belyatsky ◽  
G. L. Leitchenkov ◽  
V. G. Batanova ◽  
A. V. Sobolev

Mesozoic dikes associated with the Karoo plume were studied within the East Antarctica where at Queen Maud Land on the Almannryggen massif high-Ti magnesian Fe-basalts were found. It is assumed that such basalts originate by means of the pyroxenite-containing mantle melting. The isotopic characteristics of the studied dolerites reflect the composition of the pyroxenite source - the ancient oceanic lithosphere (ЕМI), submerged at the mantle depths of 150-170 km in the paleosubduction zone of the Gondwanian continent and transformed 180 m.y. ago into the pyroxenite melt when interacting with the plume mantle peridotite.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Shun-ichiro Karato ◽  
Bijaya Karki ◽  
Jeffrey Park

AbstractOceans on Earth are present as a result of dynamic equilibrium between degassing and regassing through the interaction with Earth’s interior. We review mineral physics, geophysical, and geochemical studies related to the global water circulation and conclude that the water content has a peak in the mantle transition zone (MTZ) with a value of 0.1–1 wt% (with large regional variations). When water-rich MTZ materials are transported out of the MTZ, partial melting occurs. Vertical direction of melt migration is determined by the density contrast between the melts and coexisting minerals. Because a density change associated with a phase transformation occurs sharply for a solid but more gradually for a melt, melts formed above the phase transformation depth are generally heavier than solids, whereas melts formed below the transformation depth are lighter than solids. Consequently, hydrous melts formed either above or below the MTZ return to the MTZ, maintaining its high water content. However, the MTZ water content cannot increase without limit. The melt-solid density contrast above the 410 km depends on the temperature. In cooler regions, melting will occur only in the presence of very water-rich materials. Melts produced in these regions have high water content and hence can be buoyant above the 410 km, removing water from the MTZ. Consequently, cooler regions of melting act as a water valve to maintain the water content of the MTZ near its threshold level (~ 0.1–1.0 wt%). Mass-balance considerations explain the observed near-constant sea-level despite large fluctuations over Earth history. Observations suggesting deep-mantle melting are reviewed including the presence of low-velocity anomalies just above and below the MTZ and geochemical evidence for hydrous melts formed in the MTZ. However, the interpretation of long-term sea-level change and the role of deep mantle melting in the global water circulation are non-unique and alternative models are reviewed. Possible future directions of studies on the global water circulation are proposed including geodynamic modeling, mineral physics and observational studies, and studies integrating results from different disciplines.


2021 ◽  
Vol 14 (2) ◽  
pp. 121
Author(s):  
André Miranda ◽  
Tiago Santos ◽  
Eric Largy ◽  
Carla Cruz

We have designed AS1411-N6, a derivative of the nucleolin (NCL)-binding aptamer AS1411, by adding six nucleotides to the 5′-end that are complementary to nucleotides at the 3′-end forcing it into a stem-loop structure. We evaluated by several biophysical techniques if AS1411-N6 can adopt one or more conformations, one of which allows NCL binding. We found a decrease of polymorphism of G-quadruplex (G4)-forming sequences comparing to AS1411 and the G4 formation in presence of K+ promotes the duplex folding. We also studied the binding properties of ligands TMPyP4, PhenDC3, PDS, 360A, and BRACO-19 in terms of stability, binding, topology maintenance of AS1411-N6, and NCL recognition. The melting experiments revealed promising stabilizer effects of PhenDC3, 360A, and TMPyP4, and the affinity calculations showed that 360A is the most prominent affinity ligand for AS1411-N6 and AS1411. The affinity determined between AS1411-N6 and NCL denoting a strong interaction and complex formation was assessed by PAGE in which the electrophoretic profile of AS1411-N6 showed bands of the dimeric form in the presence of the ligands and NCL.


1986 ◽  
Vol 108 (3) ◽  
pp. 649-653 ◽  
Author(s):  
E. M. Sparrow ◽  
G. A. Gurtcheff ◽  
T. A. Myrum

Melting experiments were performed encompassing both pure and impure substances. The pure substances included n-octadecane paraffin and n-eicosane paraffin, while the impure substances were mixtures synthesized from the pure paraffins. The experiments were carried out in a closed vertical tube whose wall was subjected to a step-change increase in temperature to initiate the melting. For each impure substance, supplementary measurements were made of two characteristic temperatures: the temperature T** at which melting of the solid phase first begins and the lowest temperature T* at which the melting can go to completion. For a pure substance, T** = T*. The time-dependent melting results for all the investigated substances, both pure and impure, were well correlated as a function of FoSte**(Gr**)1/8 alone, where the ** signifies the presence of T** in the temperature difference which appears in Ste and Gr. This correlation enables melting rates for impure substances to be determined from melting rates for pure substances. The T** values needed for the implementation of the correlation can be obtained from simple experiments, obviating the need for the complete equilibrium phase diagram.


Sign in / Sign up

Export Citation Format

Share Document