water circulation
Recently Published Documents


TOTAL DOCUMENTS

806
(FIVE YEARS 146)

H-INDEX

50
(FIVE YEARS 5)

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 97
Author(s):  
Ching-Huei Kuo ◽  
Pi-Yi Li ◽  
Jun-Yi Lin ◽  
Yi-Lin Chen

This paper presents a water circulation model by combing oxygen and hydrogen stable isotopes and mean residence time (MRT) estimation in a high-temperature metamorphic geothermal field, Tuchen, in Yilan, Taiwan. A total of 18 months of oxygen and hydrogen stable isotopes of surface water and thermal water show the same variation pattern, heavier values in summer and lighter values in the rest of the year. A shift of δ18O with a relative constant δD indicates the slow fluid–rock interaction process in the study area. Two adjacent watersheds, the Tianguer River and Duowang River, exhibit different isotopic values and imply different recharge altitudes. The seasonal variation enabled us to use stable isotope to estimate mean residence time of groundwater in the study area. Two wells, 160 m and 2200 m deep, were used to estimate mean residence time of the groundwater. Deep circulation recharges from higher elevations, with lighter isotopic values, 5.9‰ and 64‰ of δ18O and δD, and a longer mean residence time, 1148 days, while the shallow circulation comes from another source with heavier values, 5.7‰ and 54.4‰ of δ18O and δD, and a shorter mean residence time, 150 days. A two-circulation model was established based on temporal and spatial distribution characteristics of stable isotopes and the assistance of MRT. This study demonstrates the usefulness of the combined usage for further understanding water circulation of other various temperatures of metamorphic geothermalfields.


Harmful Algae ◽  
2022 ◽  
Vol 111 ◽  
pp. 102166
Author(s):  
A. Ross Brown ◽  
Martin K.S. Lilley ◽  
Jamie Shutler ◽  
Claire Widdicombe ◽  
Paul Rooks ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Sascha Müller ◽  
Søren Jessen ◽  
Torben O. Sonnenborg ◽  
Rena Meyer ◽  
Peter Engesgaard

The near coastal zone, hosting the saltwater-freshwater interface, is an important zone that nutrients from terrestrial freshwaters have to pass to reach marine environments. This zone functions as a highly reactive biogeochemical reactor, for which nutrient cycling and budget is controlled by the water circulation within and across that interface. This study addresses the seasonal variation in water circulation, salinity pattern and the temporal seawater-freshwater exchange dynamics at the saltwater-wedge. This is achieved by linking geophysical exploration and numerical modeling to hydrochemical and hydraulic head observations from a lagoon site at the west coast of Denmark. The hydrochemical data from earlier studies suggests that increased inland recharge during winter drives a saltwater-wedge regression (seaward movement) whereas low recharge during summer causes a wedge transgression. Transient variable density model simulations reproduce only the hydraulic head dynamics in response to recharge dynamics, while the salinity distribution across the saltwater wedge cannot be reproduced with accuracy. A dynamic wedge is only simulated in the shallow part of the aquifer (<5 m), while the deeper parts are rather unaffected by fluctuations in freshwater inputs. Fluctuating salinity concentrations in the lagoon cause the development of a temporary intertidal salinity cell. This leads to a reversed density pattern in the underlying aquifer and the development of a freshwater containing discharge tube, which is confined by an overlying and underlying zone of saltwater. This process can explain observed trends in the in-situ data, despite an offset in absolute concentrations. Geophysical data indicates the presence of a deeper low hydraulic conductive unit, which coincides with the stagnant parts of the simulated saltwater-wedge. Thus, exchange fluxes refreshing the deeper low permeable areas are reduced. Consequently, this study suggests a very significant seasonal water circulation within the coastal aquifer near the seawater-freshwater interface, which is governed by the hydrogeological setting and the incoming freshwater fluxes, where nutrient delivery is limited to a small corridor of the shallow part of the aquifer.


2021 ◽  
Vol 96 ◽  
pp. 101258
Author(s):  
A.M. Fedorov ◽  
M.V. Budyansky ◽  
T.V. Belonenko ◽  
S.V. Prants ◽  
M.Yu. Uleysky ◽  
...  

2021 ◽  
Vol 173 ◽  
pp. 112938
Author(s):  
Gaelle Faivre ◽  
Erie Sami ◽  
Brendan Mackey ◽  
Rodger Tomlinson ◽  
Hong Zhang ◽  
...  

2021 ◽  
Vol 574 ◽  
pp. 117163
Author(s):  
David J. Janssen ◽  
Jörg Rickli ◽  
April N. Abbott ◽  
Michael J. Ellwood ◽  
Benjamin S. Twining ◽  
...  

2021 ◽  
Vol 90 (9-2) ◽  
Author(s):  
Saodat Ergasheva ◽  
Odil Komilov ◽  
Bakhodir Kadirov ◽  
Oybek Aripdjanov ◽  
Maksad Tursunov ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Hsueh-Han Hsieh ◽  
Ming-Hsiu Chuang ◽  
Yung-Yen Shih ◽  
W. Sanjaya Weerakkody ◽  
Wei-Jen Huang ◽  
...  

Hypoxic events are becoming frequent in some estuaries and coastal waters due to over-enrichment of anthropogenic nutrients, organic matter, and/or due to restricted water circulation. The coastal lagoons and estuaries of Sri Lanka are facing high population pressure and lacking sufficient infrastructure. Coastal lagoons may receive high anthropogenic inputs of natural or untreated nitrogen and phosphorus wastes, and consequently result in hypoxic conditions while sluggish circulation occurred. In this study, we examined the spatiotemporal variability of eutrophication and hypoxia in the Negombo Lagoon, one of the most productive and sensitive coastal ecosystems in Sri Lanka. Based on seasonal measurements of dissolved oxygen, nutrients, chlorophyll-a (Chl-a), particulate and dissolved organic carbon (POC and DOC), we concluded that eutrophication and hypoxia occurred in both the dry and wet seasons. The main contributing factors were high seawater temperature and poor water circulation in the dry season and high nutrient loading combined with elevated POC and DOC inputs in the wet season.


2021 ◽  
pp. 2580-2588
Author(s):  
Noor T. Altaee ◽  
Zaid A. Malak

The Early Jurassic (Liassic) sequence crops out in numerous anticlines of the high folded zone of north and north-east Iraq and in the Rutba subzone (including Ubaid Formation) in west Iraq. The present study deals with siliciclastic / carbonate rocks of the 58 m-thick Ubaid Formation at Zor Hauran valley in south western Iraq. The formation consists of two parts; the lower part is composed of pebbly coarse sandstone and greenish to yellowish soft marl alternated with marly dolostone, while the upper part is characterized by light brown, well bedded dolostone, with stromatolite structure in some locations. Oval, light to dark brown nodules of chert are also present.      A detailed field lithological description and facies analysis of the Ubaid Formation were performed for thin sections. It is composed of five main microfacies; dolomitized mudstone, dolomitized bioclastic wackstone, dolomitized pelloidal packstone, dolomitized oolitic grainstone, and bindstone, in addition to two lithofacies: marl and pebbly sandstone. These facies reflect the deposition from the environment of the lower supratidal to intertidal zone and the encompassing shallow scaffold secured shoal - marine environment with cautious water circulation.


2021 ◽  
Vol 13 (16) ◽  
pp. 8871
Author(s):  
Jong Mun Lee ◽  
Minji Park ◽  
Bae Kyung Park ◽  
Jiyeon Choi ◽  
Jinsun Kim ◽  
...  

Owing to urbanization, impervious areas within watersheds have continuously increased, distorting healthy water circulation systems by reducing soil infiltration and base flow; moreover, increases in surface runoff deteriorate water quality by increasing the inflow of nonpoint sources. In this study, we constructed a Hydrological Simulation Program—Fortran (HSPF) watershed model that applies the impervious area and can set medium- and long-term water circulation management goals for watershed sub-areas. The model was tested using a case study from the Yeongsan River watershed, Korea. The results show that impervious land-cover accounts for 18.47% of the upstream reach in which Gwangju City is located; approximately twice the average for the whole watershed. Depending on the impervious area reduction scenario, direct runoff and nonpoint source load could be reduced by up to 56% and 35%, respectively; the water circulation rate could be improved by up to 16%. Selecting management goals requires the consideration of both policy objectives and budget. For urban areas with large impervious cover, the designation of nonpoint source management areas is required. For new cities, it is necessary to introduce water circulation systems (e.g., low impact development techniques) to improve rainwater penetration and recharge and activate preemptive water circulation.


Sign in / Sign up

Export Citation Format

Share Document