Carbonate formation by anaerobic oxidation of methane: Evidence from lipid biomarker and fossil 16S rDNA

2008 ◽  
Vol 72 (7) ◽  
pp. 1824-1836 ◽  
Author(s):  
A. Stadnitskaia ◽  
D. Nadezhkin ◽  
B. Abbas ◽  
V. Blinova ◽  
M.K. Ivanov ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Haoyi Yao ◽  
Giuliana Panieri ◽  
Moritz F. Lehmann ◽  
Tobias Himmler ◽  
Helge Niemann

Present-day activity of cold seeps in the ocean is evident from direct observations of methane emanating from the seafloor, the presence of chemosynthetic organisms, or the quantification of high gas concentrations in sediment pore waters and the water column. Verifying past cold seep activity and biogeochemical characteristics is more challenging but may be reconstructed from proxy records of authigenic seep carbonates. Here, we investigated the lipid-biomarker inventory, carbonate mineralogy, and stable carbon and oxygen isotope compositions of seep-associated carbonates from two active Arctic methane seeps, located to the northwest (Vestnesa Ridge; ∼1,200 m water depth) and south (Storfjordrenna; ∼380 m water depth) offshore Svalbard. The aragonite-dominated mineralogy of all but one carbonate sample indicate precipitation close to the seafloor in an environment characterized by high rates of sulfate-dependent anaerobic oxidation of methane (AOM). In contrast, Mg-calcite rich nodules sampled in sediments of Storfjordrenna appear to have formed at the sulfate-methane-transition zone deeper within the sediment at lower rates of AOM. AOM activity at the time of carbonate precipitation is indicated by the 13C-depleted isotope signature of the carbonates [−20 to −30‰ Vienna Pee Dee Belemnite (VPDB)], as well as high concentrations of 13C-depleted lipid biomarkers diagnostic for anaerobic methanotrophic archaea (archaeol and sn2-hydroxyarchaeol) and sulfate-reducing bacteria (iso and anteiso-C15:0 fatty acids) in the carbonates. We also found 13C-depleted lipid biomarkers (diploptene and a 4α-methyl sterol) that are diagnostic for bacteria mediating aerobic oxidation of methane (MOx). This suggests that the spatial separation between AOM and MOx zones was relatively narrow at the time of carbonate formation, as is typical for high methane-flux regimes. The seep-associated carbonates also displayed relatively high δ18O values (4.5–5‰ VPDB), indicating the presence of 18O-enriched fluids during precipitation, possibly derived from destabilized methane gas hydrates. Based on the combined isotopic evidence, we suggest that all the seep carbonates resulted from the anaerobic oxidation of methane during intense methane seepage. The seepage likely was associated to gas hydrates destabilization, which led to the methane ebullition from the seafloor into the water column.


2021 ◽  
Vol 194 ◽  
pp. 116928
Author(s):  
Wen-Bo Nie ◽  
Jie Ding ◽  
Guo-Jun Xie ◽  
Xin Tan ◽  
Yang Lu ◽  
...  

Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1541-1554 ◽  
Author(s):  
Christian Stranne ◽  
Matt O'Regan ◽  
Martin Jakobsson ◽  
Volker Brüchert ◽  
Marcelo Ketzer

Abstract. Assessments of future climate-warming-induced seafloor methane (CH4) release rarely include anaerobic oxidation of methane (AOM) within the sediments. Considering that more than 90 % of the CH4 produced in ocean sediments today is consumed by AOM, this may result in substantial overestimations of future seafloor CH4 release. Here, we integrate a fully coupled AOM module with a numerical hydrate model to investigate under what conditions rapid release of CH4 can bypass AOM and result in significant fluxes to the ocean and atmosphere. We run a number of different model simulations for different permeabilities and maximum AOM rates. In all simulations, a future climate warming scenario is simulated by imposing a linear seafloor temperature increase of 3 ∘C over the first 100 years. The results presented in this study should be seen as a first step towards understanding AOM dynamics in relation to climate change and hydrate dissociation. Although the model is somewhat poorly constrained, our results indicate that vertical CH4 migration through hydraulic fractures can result in low AOM efficiencies. Fracture flow is the predicted mode of methane transport under warming-induced dissociation of hydrates on upper continental slopes. Therefore, in a future climate warming scenario, AOM might not significantly reduce methane release from marine sediments.


2004 ◽  
Vol 70 (2) ◽  
pp. 1231-1233 ◽  
Author(s):  
Jens Kallmeyer ◽  
Antje Boetius

ABSTRACT Rates of sulfate reduction (SR) and anaerobic oxidation of methane (AOM) in hydrothermal deep-sea sediments from Guaymas Basin were measured at temperatures of 5 to 200°C and pressures of 1 × 105, 2.2 × 107, and 4.5 × 107 Pa. A maximum SR of several micromoles per cubic centimeter per day was found at between 60 and 95°C and 2.2 × 107 and 4.5 × 107 Pa. Maximal AOM was observed at 35 to 90°C but generally accounted for less than 5% of SR.


2016 ◽  
Vol 102 ◽  
pp. 445-452 ◽  
Author(s):  
Yong-Ze Lu ◽  
Liang Fu ◽  
Jing Ding ◽  
Zhao-Wei Ding ◽  
Na Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document