scholarly journals Corrigendum to “Radiocarbon signatures and size–age–composition relationships of major organic matter pools within a unique California upwelling system” [Geochim. Cosmochim. Acta 126 (2014) 1–17]

2021 ◽  
Vol 312 ◽  
pp. 392-395
Author(s):  
B.D. Walker ◽  
T.P. Guilderson ◽  
K.M. Okimura ◽  
M.B. Peacock ◽  
M.D. McCarthy
2014 ◽  
Vol 126 ◽  
pp. 1-17 ◽  
Author(s):  
B.D. Walker ◽  
T.P. Guilderson ◽  
K.M. Okimura ◽  
M.B. Peacock ◽  
M.D. McCarthy

2012 ◽  
Vol 9 (12) ◽  
pp. 18479-18518
Author(s):  
A. Rain-Franco ◽  
C. Muñoz ◽  
C. Fernandez

Abstract. We investigated the production of ammonium via photodegradation of dissolved organic matter (DOM) in the coastal upwelling system off central Chile (36° S). Photoammonification experiments were carried out using exudates obtained from representative diatom species (Chaetoceros muelleri and Thalassiosira minuscule) and natural marine DOM under simulated solar radiation conditions. Additionally, we evaluated the use of photoproduced ammonium by natural microbial communities and separated ammonium oxidizing archaea and bacteria by using GC-7 as an inhibitor of the archaeal community. We found photoammonification operating at two levels: via the transformation of DOM by UV radiation (abiotic ammonification) and via the simultaneous occurrence of abiotic phototransformation and biological remineralization of DOM into NH4+ (referred as gross photoproduction of NH4+). The maximum rates of abiotic ammonification reached 0.057 μmol L−1 h−1, whereas maximum rates of gross photoproduction reached 0.746 μmol L−1 h−1. Our results also suggest that ammonium oxidizing archaea could dominate the biotic remineralization induced by photodegradation of organic matter and consequently play an important role in the local N cycle. Abiotic ammonium photoproduction in coastal upwelling systems could support between 7 and 50% of the spring-summer phytoplankton NH4+ demand. Surprisingly, gross ammonium photoproduction (remineralization induced by abiotic ammonification) might support 50 to 180% of spring-summer phytoplankton NH4+ assimilation.


2016 ◽  
Vol 179 ◽  
pp. 23-33 ◽  
Author(s):  
Adoum Mahamat Ahmat ◽  
Mohammed Boussafir ◽  
Claude Le Milbeau ◽  
Régis Guegan ◽  
Jorge Valdès ◽  
...  

2019 ◽  
Vol 16 (9) ◽  
pp. 2033-2047 ◽  
Author(s):  
Alexandra N. Loginova ◽  
Sören Thomsen ◽  
Marcus Dengler ◽  
Jan Lüdke ◽  
Anja Engel

Abstract. The eastern tropical South Pacific (ETSP) hosts the Peruvian upwelling system, which represents one of the most productive areas in the world ocean. High primary production followed by rapid heterotrophic utilization of organic matter supports the formation of one of the most intense oxygen minimum zones (OMZs) in the world ocean, where dissolved oxygen (O2) concentrations reach less than 1 µmol kg−1. The high productivity leads to an accumulation of dissolved organic matter (DOM) in the surface layers that may serve as a substrate for heterotrophic respiration. However, the importance of DOM utilization for O2 respiration in the Peruvian upwelling system in general and for shaping the upper oxycline in particular remains unclear so far. This study reports the first estimates of diapycnal fluxes and supply of O2, dissolved organic carbon (DOC), dissolved organic nitrogen, dissolved hydrolysable amino acids (DHAA) and dissolved combined carbohydrates (DCCHO) for the ETSP off Peru. Diapycnal flux and supply estimates were obtained by combining measured vertical diffusivities and solute concentration gradients. They were analysed together with the molecular composition of DCCHO and DHAA to infer the transport of labile DOM into the upper OMZ and the potential role of DOM utilization for the attenuation of the diapycnal O2 flux that ventilates the OMZ. The observed diapycnal O2 flux (50 mmol O2 m−2 d−1 at maximum) was limited to the upper 80 m of the water column; the O2 supply of ∼1 µmol kg−1 d−1 was comparable to previously published O2 consumption rates for the North and South Pacific OMZs. The diapycnal DOM flux (31 mmol C m−2 d−1 at maximum) was limited to ∼30 m water depth, suggesting that the labile DOM is extensively consumed within the upper part of the shallow oxycline off Peru. The analyses of DCCHO and DHAA composition support this finding, suggesting that DOM undergoes comprehensive remineralization within the upper part of the oxycline, as the DOM within the core of the OMZ was found to be largely altered. Estimated by a simple equation for carbon combustion, aerobic respiration of DCCHO and DHAA, supplied by diapycnal mixing (0.46 µmol kg−1 d−1 at maximum), could account for up to 38 % of the diapycnal O2 supply in the upper oxycline, which suggests that DOM utilization plays a significant role for shaping the upper oxycline in the ETSP.


Sign in / Sign up

Export Citation Format

Share Document