scholarly journals Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA

Gene X ◽  
2020 ◽  
Vol 5 ◽  
pp. 100035 ◽  
Author(s):  
Somayah Albaradei ◽  
Arturo Magana-Mora ◽  
Maha Thafar ◽  
Mahmut Uludag ◽  
Vladimir B. Bajic ◽  
...  
2018 ◽  
Vol 34 (24) ◽  
pp. 4180-4188 ◽  
Author(s):  
Jasper Zuallaert ◽  
Fréderic Godin ◽  
Mijung Kim ◽  
Arne Soete ◽  
Yvan Saeys ◽  
...  

2020 ◽  
Vol 18 (04) ◽  
pp. 2050024
Author(s):  
Santhosh Amilpur ◽  
Raju Bhukya

Splice site prediction is crucial for understanding underlying gene regulation, gene function for better genome annotation. Many computational methods exist for recognizing the splice sites. Although most of the methods achieve a competent performance, their interpretability remains challenging. Moreover, all traditional machine learning methods manually extract features, which is tedious job. To address these challenges, we propose a deep learning-based approach (EDeepSSP) that employs convolutional neural networks (CNNs) architecture for automatic feature extraction and effectively predicts splice sites. Our model, EDeepSSP, divulges the opaque nature of CNN by extracting significant motifs and explains why these motifs are vital for predicting splice sites. In this study, experiments have been conducted on six benchmark acceptors and donor datasets of humans, cress, and fly. The results show that EDeepSSP has outperformed many state-of-the-art approaches. EDeepSSP achieves the highest area under the receiver operating characteristic curve (AUC_ROC) and area under the precision-recall curve (AUC_PR) of 99.32% and 99.26% on human donor datasets, respectively. We also analyze various filter activities, feature activations, and extracted significant motifs responsible for the splice site prediction. Further, we validate the learned motifs of our model against known motifs of JASPAR splice site database.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


Sign in / Sign up

Export Citation Format

Share Document