scholarly journals N-terminal region of RecQ4 inhibits non-homologous end joining and chromatin association of the Ku heterodimer in Xenopus egg extracts

Gene ◽  
2021 ◽  
pp. 145647
Author(s):  
Takashi Tsuyama ◽  
Kumiko Fujita ◽  
Ryosuke Sasaki ◽  
Shiori Hamanaka ◽  
Yuki Sotoyama ◽  
...  
1994 ◽  
Vol 14 (2) ◽  
pp. 888-895 ◽  
Author(s):  
P Pfeiffer ◽  
S Thode ◽  
J Hancke ◽  
W Vielmetter

Rejoining of nonhomologous DNA termini plays a central role in processes of illegitimate recombination. In Xenopus egg extracts, DNA ends with noncomplementary 4-nucleotide antiparallel single-strand protrusions are assumed to be joined by formation of short mismatched overlap intermediates. The extents of these overlaps may be set by single fortuitously matching base pairs and determine the patterns of subsequent gap filling and nick ligation. Under conditions of alternative overlap settings, rules for the most probable joining pathway and the effects of mismatches on junction formation were analyzed. We show that in certain cases, fill-in and ligation converting overlap intermediates into covalently closed junctions may proceed in the presence of unrepaired mismatches, whereas in other cases, completion of junction formation is preceded by removal of mismatches. Results are discussed in relation with "alignment" proteins postulated to structurally support overlap heteroduplexes during junction formation.


1994 ◽  
Vol 14 (2) ◽  
pp. 888-895
Author(s):  
P Pfeiffer ◽  
S Thode ◽  
J Hancke ◽  
W Vielmetter

Rejoining of nonhomologous DNA termini plays a central role in processes of illegitimate recombination. In Xenopus egg extracts, DNA ends with noncomplementary 4-nucleotide antiparallel single-strand protrusions are assumed to be joined by formation of short mismatched overlap intermediates. The extents of these overlaps may be set by single fortuitously matching base pairs and determine the patterns of subsequent gap filling and nick ligation. Under conditions of alternative overlap settings, rules for the most probable joining pathway and the effects of mismatches on junction formation were analyzed. We show that in certain cases, fill-in and ligation converting overlap intermediates into covalently closed junctions may proceed in the presence of unrepaired mismatches, whereas in other cases, completion of junction formation is preceded by removal of mismatches. Results are discussed in relation with "alignment" proteins postulated to structurally support overlap heteroduplexes during junction formation.


1995 ◽  
Vol 6 (2) ◽  
pp. 227-236 ◽  
Author(s):  
J Rosenblatt ◽  
P Peluso ◽  
T J Mitchison

Non-muscle cells contain 15-500 microM actin, a large fraction of which is unpolymerized. Thus, the concentration of unpolymerized actin is well above the critical concentration for polymerization in vitro (0.2 microM). This fraction of actin could be prevented from polymerization by being ADP bound (therefore less favored to polymerize) or by being ATP bound and sequestered by a protein such as thymosin beta 4, or both. We isolated the unpolymerized actin from Xenopus egg extracts using immobilized DNase 1 and assayed the bound nucleotide. High-pressure liquid chromatography analysis showed that the bulk of soluble actin is ATP bound. Analysis of actin-bound nucleotide exchange rates suggested the existence of two pools of unpolymerized actin, one of which exchanges nucleotide relatively rapidly and another that apparently does not exchange. Native gel electrophoresis of Xenopus egg extracts demonstrated that most of the soluble actin exists in complexes with other proteins, one of which might be thymosin beta 4. These results are consistent with actin polymerization being controlled by the sequestration and release of ATP-bound actin, and argue against nucleotide exchange playing a major role in regulating actin polymerization.


2012 ◽  
Vol 22 (11) ◽  
pp. 977-988 ◽  
Author(s):  
Torahiko L. Higashi ◽  
Megumi Ikeda ◽  
Hiroshi Tanaka ◽  
Takuro Nakagawa ◽  
Masashige Bando ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document