Soil erodibility influenced by natural restoration time of abandoned farmland on the Loess Plateau of China

Geoderma ◽  
2018 ◽  
Vol 325 ◽  
pp. 18-27 ◽  
Author(s):  
Hao Wang ◽  
Guang-hui Zhang ◽  
Ning-ning Li ◽  
Bao-jun Zhang ◽  
Han-yue Yang
2013 ◽  
Vol 38 (14) ◽  
pp. 1725-1734 ◽  
Author(s):  
Bing Wang ◽  
Guang-hui Zhang ◽  
Yang-yang Shi ◽  
X.C. Zhang ◽  
Zong-ping Ren ◽  
...  

2021 ◽  
Vol 772 ◽  
pp. 145540
Author(s):  
Mingming Guo ◽  
Zhuoxin Chen ◽  
Wenlong Wang ◽  
Tianchao Wang ◽  
Wenxin Wang ◽  
...  

2020 ◽  
Vol 35 (2) ◽  
pp. 387
Author(s):  
CHEN Zhuo-xin ◽  
WANG Wen-long ◽  
GUO Ming-ming ◽  
WANG Tian-chao ◽  
GUO Wen-zhao ◽  
...  

Author(s):  
Jiaying Zhai ◽  
Yahui Song ◽  
Wulan Entemake ◽  
Hongwei Xu ◽  
Yang Wu ◽  
...  

Analyzing the dynamics of soil particle size distribution (PSD) and erodibility is important for understanding the changes of soil texture and quality after cropland abandonment. This study aimed to determine how restoration age and latitude affect soil erodibility and the multifractal dimensions of PSD during natural recovery. We collected soil samples from grassland, shrubland, and forests with different restoration ages in the steppe zone (SZ), forest-steppe zone (FSZ), and forest zone (FZ). Various analyses were conducted on the samples, including multifractal analysis and erodibility analysis. Our results showed that restoration age had no significant effect on the multifractal dimensions of PSD (capacity dimension (D0), information dimension (D1), information dimension/capacity dimension ratio (D1/D0), correlation dimension (D2)), and soil erodibility. Multifractal dimensions tended to increase, while soil erodibility tended to decrease, with restoration age. Latitude was negatively correlated with fractal dimensions (D0, D2) and positively correlated with K and D1/D0. During vegetation restoration, restoration age, precipitation, and temperature affect the development of vegetation, resulting in differences in soil organic carbon, total nitrogen, soil texture, and soil enzyme activity, and by affecting soil structure to change the soil stability. This study revealed the impact of restoration age and latitude on soil erosion in the Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document