vegetation patchiness
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Heng Huang ◽  
Philip A. Tuley ◽  
Chengyi Tu ◽  
Julie C. Zinnert ◽  
Ignacio Rodriguez-Iturbe ◽  
...  

AbstractThe spatial pattern of vegetation patchiness may follow universal characteristic rules when the system is close to critical transitions between alternative states, which improves the anticipation of ecosystem-level state changes which are currently difficult to detect in real systems. However, the spatial patterning of vegetation patches in temperature-driven ecosystems have not been investigated yet. Here, using high-resolution imagery from 1972 to 2013 and a stochastic cellular automata model, we show that in a North American coastal ecosystem where woody plant encroachment has been happening, the size distribution of woody patches follows a power law when the system approaches a critical transition, which is sustained by the local positive feedbacks between vegetation and the surrounding microclimate. Therefore, the observed power law distribution of woody vegetation patchiness may be suggestive of critical transitions associated with temperature-driven woody plant encroachment in coastal and potentially other ecosystems.


2020 ◽  
Author(s):  
José M. Grünzweig ◽  
Hans J. De Boeck ◽  
Ana Rey ◽  
Omer Tzuk ◽  
Ehud Meron ◽  
...  

<p>Ecosystems are expected to face a significantly warmer and drier climate in the coming decades. Experiments have tried to unravel drought responses of ecosystems in mesic and humid biomes, but the structure and functioning of these systems may change when climatic regime shifts occur. Here, we summarize major mechanisms typical of drylands and indicate how these may come into play when current mesic ecosystems face tipping points in a warmer and drier world.</p><p>These dryland mechanisms of ecosystem functioning encompass (i) processes of vegetation development, such as self-organization of vegetation patchiness and formation of biological soil crust, (ii) biologically driven biogeochemical and physiological processes, such as drying-wetting cycles and hydraulic redistribution, and (iii) abiotically driven biogeochemical processes, such as photochemical degradation of organic matter and soil hydrophobicity. We present insights from published studies and original model simulations and mapping, and formulate hypotheses on thresholds and spatial locations beyond which dryland mechanisms are expected to operate in non-xeric ecosystems. Notably, for dryland mechanisms to get activated elsewhere there is no need for non-xeric biomes to become actual drylands. With a globally increasing area exposed to gradually rising temperatures, moderate decline in precipitation, and increasing frequency, duration and intensity of extreme heat and drought events, we envision that dryland mechanisms will increasingly control ecosystem functioning in many regions of the world.</p>


2014 ◽  
Vol 104 (2) ◽  
pp. 200-208 ◽  
Author(s):  
Rafael A. Dias ◽  
Vinicius A. G. Bastazini ◽  
Andros T. Gianuca

Nearly all remnants of temperate grasslands in southeastern South America are used for livestock ranching and are subject to habitat degradation resulting from this activity. Exploring how habitat features affect the composition of grassland avifaunal communities is a first step to understand how current cattle-ranching management practices impact avian diversity. We used canonical ordination to test for relationships between five habitat variables and the composition of the bird community in coastal grasslands in southern Brazil. We sampled pastures with different heights, from overgrazed short-grass to tall herbaceous vegetation. We recorded 1,535 individuals and 27 species of birds. The first ordination axis indicated a strong contribution of mean vegetation height on the composition of the bird community, whereas the second axis revealed the influence of herbaceous vegetation patchiness and woody vegetation cover. Three groups of species were revealed by the ordination: one more diffuse associated with intermediate and tall herbaceous vegetation, another with short grass, and a third with vegetation patchiness and woody vegetation. Species restricted to tall herbaceous vegetation are negatively impacted from habitat degradation resulting from overgrazing and trampling by livestock, and mowing and burning of tall plants. Occurrence of these species in our study area is related with the presence of swales immediately behind the dune system and where remnants of tall vegetation persist. Birds of pastures with ample cover of short herbaceous plants, including one globally threatened species and six other restricted to short-grass habitat, apparently benefit from local livestock management practices. Woody vegetation possibly functions as a keystone structure, enabling the occurrence in grasslands of avian species that rely on shrubby habitat. Although livestock ranching promotes the diversity of habitats by creating distinct patches of vegetation height in grasslands, current management practices directed to the maintenance of short grass pastures may eliminate an entire subset of species, including regionally threatened taxa, and reduce avian diversity. The maintenance of large patches of tall herbaceous plants is needed to ensure the survival of species reliant on this type of grassland structure in our study area.


Author(s):  
Yuval R. Zelnik ◽  
Shai Kinast ◽  
Hezi Yizhaq ◽  
Golan Bel ◽  
Ehud Meron

Drylands are pattern-forming systems showing self-organized vegetation patchiness, multiplicity of stable states and fronts separating domains of alternative stable states. Pattern dynamics, induced by droughts or disturbances, can result in desertification shifts from patterned vegetation to bare soil. Pattern formation theory suggests various scenarios for such dynamics: an abrupt global shift involving a fast collapse to bare soil, a gradual global shift involving the expansion and coalescence of bare-soil domains and an incipient shift to a hybrid state consisting of stationary bare-soil domains in an otherwise periodic pattern. Using models of dryland vegetation, we address the question of which of these scenarios can be realized. We found that the models can be split into two groups: models that exhibit multiplicity of periodic-pattern and bare-soil states, and models that exhibit, in addition, multiplicity of hybrid states. Furthermore, in all models, we could not identify parameter regimes in which bare-soil domains expand into vegetated domains. The significance of these findings is that, while models belonging to the first group can only exhibit abrupt shifts, models belonging to the second group can also exhibit gradual and incipient shifts. A discussion of open problems concludes the paper.


2012 ◽  
Vol 16 (2) ◽  
pp. 127-139 ◽  
Author(s):  
Efrat Sheffer ◽  
Jost von Hardenberg ◽  
Hezi Yizhaq ◽  
Moshe Shachak ◽  
Ehud Meron

Sign in / Sign up

Export Citation Format

Share Document