scholarly journals Determining the influence of catchment area on intensity of gully erosion using high-resolution aerial imagery: A 40-year case study from the Loess Plateau, northern China

Geoderma ◽  
2019 ◽  
Vol 347 ◽  
pp. 90-102 ◽  
Author(s):  
Shengtian Yang ◽  
Yabing Guan ◽  
Changsen Zhao ◽  
Chunbin Zhang ◽  
Juan Bai ◽  
...  
2017 ◽  
Vol 9 (8) ◽  
pp. 1349 ◽  
Author(s):  
Shahmir Kalhoro ◽  
Xuexuan Xu ◽  
Wenyuan Chen ◽  
Rui Hua ◽  
Sajjad Raza ◽  
...  

Author(s):  
Yixian Chen ◽  
Juying Jiao ◽  
Yanhong Wei ◽  
Hengkang Zhao ◽  
Weijie Yu ◽  
...  

Gully erosion is a serious environmental problem worldwide, causing soil loss, land degradation, silting up of reservoirs and even catastrophic flooding. Mapping gully features from remote sensing imagery is crucial for assisting in understanding gully erosion mechanisms, predicting its development processes and assessing its environmental and socio-economic effects over large areas, especially under the increasing global climate extremes and intensive human activities. However, the potential of using increasingly available high-resolution remote sensing imagery to detect and delineate gullies has been less evaluated. Hence, 130 gullies occurred along a transect were selected from a typical watershed in the hilly and gully region of the Chinese Loess Plateau, and visually interpreted from a Pleiades-1B satellite image (panchromatic-sharpened image at 0.5 m resolution fused with 2.0 m multi-spectral bands). The interpreted gullies were compared with their measured data obtained in the field using a differential global positioning system (GPS). Results showed that gullies could generally be accurately interpreted from the image, with an average relative error of gully area and gully perimeter being 11.1% and 8.9%, respectively, and 74.2% and 82.3% of the relative errors for gully area and gully perimeter were within 15%. But involving field measurements of gullies in present imagery-based gully studies is still recommended. To judge whether gullies were mapped accurately further, a standard adopting one-pixel tolerance along the mapped gully edges was proposed and proved to be practical. Correlation analysis indicated that larger gullies could be interpreted more accurately but increasing gully shape complexity would decrease interpreting accuracy. Overall lower vegetation coverage in winter due to the withering and falling of vegetation rarely affected gully interpreting. Furthermore, gully detectability on remote sensing imagery in this region was lower than the other places of the world, due to the overall broken topography in the Loess Plateau, thus images with higher resolution than normally perceived are needed when mapping erosion features here. Taking these influencing factors (gully dimension and shape complexity, vegetation coverage, topography) into account will be favorable to select appropriate imagery and gullies (as study objects) in future imagery-based gully studies. Finally, two linear regression models were built to correct gully area (Aip, m2) and gully perimeter (Pip, m) visually extracted, by connecting them with the measured area (Ams, m2) and perimeter (Pms, m). The correction models were Ams=1.021Aip+0.139 and Pms=0.949Pip+ 0.722, respectively. These models could be helpful for improving the accuracy of interpreting results, and further accurately estimating gully development and developing more effective automated gully extraction methods on the Loess Plateau of China.


2021 ◽  
Vol 13 (5) ◽  
pp. 923
Author(s):  
Qianqian Sun ◽  
Chao Liu ◽  
Tianyang Chen ◽  
Anbing Zhang

Vegetation fluctuation is sensitive to climate change, and this response exhibits a time lag. Traditionally, scholars estimated this lag effect by considering the immediate prior lag (e.g., where vegetation in the current month is impacted by the climate in a certain prior month) or the lag accumulation (e.g., where vegetation in the current month is impacted by the last several months). The essence of these two methods is that vegetation growth is impacted by climate conditions in the prior period or several consecutive previous periods, which fails to consider the different impacts coming from each of those prior periods. Therefore, this study proposed a new approach, the weighted time-lag method, in detecting the lag effect of climate conditions coming from different prior periods. Essentially, the new method is a generalized extension of the lag-accumulation method. However, the new method detects how many prior periods need to be considered and, most importantly, the differentiated climate impact on vegetation growth in each of the determined prior periods. We tested the performance of the new method in the Loess Plateau by comparing various lag detection methods by using the linear model between the climate factors and the normalized difference vegetation index (NDVI). The case study confirmed four main findings: (1) the response of vegetation growth exhibits time lag to both precipitation and temperature; (2) there are apparent differences in the time lag effect detected by various methods, but the weighted time-lag method produced the highest determination coefficient (R2) in the linear model and provided the most specific lag pattern over the determined prior periods; (3) the vegetation growth is most sensitive to climate factors in the current month and the last month in the Loess Plateau but reflects a varied of responses to other prior months; and (4) the impact of temperature on vegetation growth is higher than that of precipitation. The new method provides a much more precise detection of the lag effect of climate change on vegetation growth and makes a smart decision about soil conservation and ecological restoration after severe climate events, such as long-lasting drought or flooding.


2004 ◽  
Vol 79 (2) ◽  
pp. 145-170 ◽  
Author(s):  
C.H. Lu ◽  
M.K. van Ittersum ◽  
R. Rabbinge

2019 ◽  
Vol 171 ◽  
pp. 246-258 ◽  
Author(s):  
Jianbing Peng ◽  
Zhongjie Fan ◽  
Di Wu ◽  
Qiangbing Huang ◽  
Qiyao Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document