Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale

Geomorphology ◽  
2012 ◽  
Vol 161-162 ◽  
pp. 40-57 ◽  
Author(s):  
Renée Schicker ◽  
Vicki Moon
2013 ◽  
Vol 1 (2) ◽  
pp. 957-1000 ◽  
Author(s):  
M. Fressard ◽  
Y. Thiery ◽  
O. Maquaire

Abstract. The objective of this paper is to assess the impact of the datasets quality for the landslide susceptibility mapping using multivariate statistical modelling methods at detailed scale. This research is conducted in the Pays d'Auge plateau (Normandy, France) with a scale objective of 1/10000, in order to fit the French guidelines on risk assessment. Five sets of data of increasing quality (considering accuracy, scale fitting, geomophological significance) and cost of acquisition are used to map the landslide susceptibility using logistic regression. The best maps obtained with each set of data are compared on the basis of different statistical accuracy indicators (ROC curves and relative error calculation), linear cross correlation and expert opinion. The results highlights that only high quality sets of data supplied with detailed geomorphological variables (i.e. field inventory and surficial formations maps) can predict a satisfying proportion of landslides on the study area.


2010 ◽  
Vol 10 (9) ◽  
pp. 1851-1864 ◽  
Author(s):  
F. Mancini ◽  
C. Ceppi ◽  
G. Ritrovato

Abstract. This study focuses on landslide susceptibility mapping in the Daunia area (Apulian Apennines, Italy) and achieves this by using a multivariate statistical method and data processing in a Geographical Information System (GIS). The Logistic Regression (hereafter LR) method was chosen to produce a susceptibility map over an area of 130 000 ha where small settlements are historically threatened by landslide phenomena. By means of LR analysis, the tendency to landslide occurrences was, therefore, assessed by relating a landslide inventory (dependent variable) to a series of causal factors (independent variables) which were managed in the GIS, while the statistical analyses were performed by means of the SPSS (Statistical Package for the Social Sciences) software. The LR analysis produced a reliable susceptibility map of the investigated area and the probability level of landslide occurrence was ranked in four classes. The overall performance achieved by the LR analysis was assessed by local comparison between the expected susceptibility and an independent dataset extrapolated from the landslide inventory. Of the samples classified as susceptible to landslide occurrences, 85% correspond to areas where landslide phenomena have actually occurred. In addition, the consideration of the regression coefficients provided by the analysis demonstrated that a major role is played by the "land cover" and "lithology" causal factors in determining the occurrence and distribution of landslide phenomena in the Apulian Apennines.


Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 483
Author(s):  
Yasin Wahid Rabby ◽  
Yingkui Li

Landslide susceptibility mapping is of critical importance to identify landslide-prone areas to reduce future landslides, causalities, and infrastructural damages. This paper presents landslide susceptibility maps at a regional scale for the Chittagong Hilly Areas (CHA), Bangladesh. The frequency ratio (FR) was integrated with the analytical hierarchy process (AHP) (FR_AHP) and logistic regression (LR) (FR_LR). A landslide inventory of 730 landslide locations and 13 landslide predisposing factors including elevation, slope, aspect, plan curvature, profile curvature, topographic wetness index (TWI), stream power index (SPI), land use/land cover, rainfall, distance from drainage network, distance from fault lines, lithology, and normalized difference vegetation index (NDVI) were used. Landslide locations were randomly split into training (80%) and validation (20%) sites to support the susceptibility analysis. A safe zone was determined based on a slope threshold for logistic regression using the exploratory data analysis. The same number of non-landslide locations were randomly selected from the safe zone to train the model (FR_LR). Success and prediction rate curves and statistical indices, including overall accuracy, were used to assess model performance. The success rate curves show that FR_LR showed the highest area under the curve (AUC) (79.46%), followed by the FR_AHP (77.15%). Statistical indices also showed that the FR_LR model gave the best performance as the overall accuracy was 0.86 for training and 0.82 for validation datasets. The prediction rate curve shows similar results. The correlation analysis shows that the landslide susceptibility maps produced by FR and FR_AHP are highly correlated (0.95). In contrast, the correlation between the maps produced by FR and FR_LR was relatively lower (0.85). It indicates that the three models are highly convergent with each other. This study’s integrated methods would be helpful for regional-scale landslide susceptibility mapping, and the landslide susceptibility maps produced would be useful for regional planning and disaster management of the CHA, Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document