susceptibility map
Recently Published Documents


TOTAL DOCUMENTS

393
(FIVE YEARS 215)

H-INDEX

28
(FIVE YEARS 10)

2021 ◽  
Vol 6 (2) ◽  
pp. 112
Author(s):  
Thema Arrisaldi ◽  
Wahyu Wilopo ◽  
Teuku Faisal Fathani

Landslide often occurred in Tinalah watershed, Kulon Progo District, every year. The frequency of landslide events is increasing after high rainfall intensity. Some factors control landslides such as slope gradient, land use, geological structure, slope hydrology, and geological condition. This research has an objective to develop the susceptibility map of Tinalah watershed and to identify the rainfall threshold to trigger a landslide. The development of the susceptibility map using frequency ratio method with four parameters including slope, type of rock, land use, and lineament density. The landslide data were collected during the field survey and from regional disaster management authority (BPBD) Kulon Progo. Rainfall data were collected from BMKG and GSMap. Soil analysis also was conducted to develop a numerical model to verify the rainfall threshold value. The result shows a high susceptibility of the landslide area is dominated in Tinalah watershed. The rainfall threshold for the low susceptibility of the landslide zone is I=490.14 D-1.404with 5-7 days antecedent rain. The rainfall threshold for medium susceptibility map is I=164.32D-0,689 3-7 days antecedent rain. Moreover, the rainfall threshold for the high susceptibility of the landslide zone is 111.62 D-0.779, with 2-7 days antecedent rain.


2021 ◽  
Author(s):  
Laurie Jayne Kurilla ◽  
Giandomenico Fubelli

Abstract Debris flows, and landslides in general, are worldwide catastrophic phenomena. As world population and urbanization grow in magnitude and geographic coverage, the need exists to extend focus, research, and modeling to a continental and global scale.Although debris flow behavior and parameters are local phenomena, sound generalizations can be applied to debris flow susceptibility analyses at larger geographic extents based on these criteria. The focus of this research is to develop a global debris flow susceptibility map by modeling at both a continental scale for all continents and by a single global model and determine whether a global model adequately represents each continent. Probability Density, Conditional Probability, Certainty Factor, Frequency Ratio, and Maximum Entropy statistical models were developed and evaluated for best model performance using fourteen environmental factors generally accepted as the most appropriate debris flow predisposing factors. Global models and models for each continent were then developed and evaluated against verification data. The comparative analysis demonstrates that a single global model performs comparably or better than individual continental models for a majority of the continents, resulting in a debris flow susceptibility map of the world useful in international planning, and future debris flow susceptibility modeling for determining societal impacts.


2021 ◽  
Vol 26 (2) ◽  
pp. 31-42
Author(s):  
Kabi Raj Paudyal ◽  
Krishna Chandra Devkota ◽  
Binod Prasad Parajuli ◽  
Puja Shakya ◽  
Preshika Baskota

This paper explores openly available geo-spatial and earth observatory data to understand landslide risk in data scarce rural areas of Nepal. It attempts to explore the application of open-source data and analytical models to inform future landslide research. The first step of this procedure starts from the review of global open datasets, literatures and case studies relevant to landslide research. The second step is followed by the case study in one of the mountainous municipalities of Nepal where we tested the identified open-source data and models to produce landslide susceptibility maps. Past studies and experiences show that the major potential sites of landslide in Nepal are highly concentrated in a geologically weak area such as the active fault regions, shear zones, axis of folds and unfavorable setting of lithology. Triggering factors like concentrated precipitation, frequent earthquake phenomenon and haphazard infrastructural development activities in the marginally stable mountain slopes have posed serious issues of landslides mostly through the geologically weak regions. In this context, openly available geo-spatial datasets can provide baseline information for exploring the landslide hazard scenario in the data scarce areas of Nepal. This research has used the available open-source data to produce a landslide susceptibility map of the Bithadchir Rural Municipality in Bajhang District and Budiganga Municipality in Bajura District of the Sudurpaschim Province of Nepal. We used qualitative analysis to evaluate the parameters and assess the susceptibility of landslide; the result was classified into five susceptibility zones: Very High, High, Moderate, Low, and Very Low. Slope and Aspect were identified to be the major determinants for the assessment. This approach is applicable, specifically, for the preliminary investigation in the data scarce region using open data sources. Furthermore, the result can be used to plan and prioritize effective disaster risk reduction strategies.


2021 ◽  
Vol 30 (4) ◽  
pp. 683-691
Author(s):  
G. Kavitha ◽  
S. Anbazhagan ◽  
S. Mani

Landslides are among the most prevalent and harmful hazards. Assessment of landslide susceptibility zonation is an important task in reducing the losses of lifeand properties. The present study aims to demarcate the landslide prone areas along the Vathalmalai Ghat road section (VGR) using remote sensing and GIS techniques. In the first step, the landslide causative factors such as geology, geomorphology, slope, slope aspect, land use / land cover, drainage density, lineament density, road buffer and relative relief were assessed. All the factors were assigned to rank and weight based on the slope stability of the landslide susceptibility zones. Then the thematic maps were integrated using ArcGIS tool and landslide susceptibility zonation was obtained and classified into five categories ; very low, low, moderate, high and very high. The landslide susceptibility map is validated with R-index and landslide inventory data collected from the field using GPS measurement. The distribution of susceptibility zones is ; 16.5% located in very low, 28.70% in low, 24.70% in moderate, 19.90% in high and 10.20% in very high zones. The R-index indicated that about 64% landslide occurences correlated with high to very high landslide susceptiblity zones. The model validation indicated that the method adopted in this study is suitable for landslide disaster mapping and planning.


Author(s):  
Cecilia Wawira Ireri ◽  
George Krhoda ◽  
Mukhovi Stellah

Gullies occur in semi-arid regions characterized by rainfall variability and seasonality, increased overland flow, affecting ecological fragility of an area. In most gully prone areas, extent of land affected by gullies is increasing. Thus, predicting susceptibility to gully erosion in semi-arid environment is an important step towards effectively rehabilitating and prevention against gully erosion. Proneness to gully occurrence was assessed against; Land cover/land use, slope, soil characteristics, rainfall variability and elevation, and modelled using geographical information system (GIS)-based bivariate statistical approach. Objectives of the study were; a) to assess influence of geomorphological factors on gully erosion, b) analyze and develop gully erosion susceptibility map, c) verify gully susceptibility images using error matrix of class labels in classified map against ground truth reference data. Total of 66 gullied areas (width and depth ≥ ranging 0.5), were mapped using 15m resolution Landsat images for 2018 and field surveys to estimate susceptibility to gully erosion by Global Mapper software in GIS. The images were verified using 120 pixels of known 15 gully presence or absence to produce an error matrix based on comparison of actual outcomes to predicted outcomes. Influence of conditioning factors to gully erosion showed a significant positive relationship between gully susceptibility and gully conditioning factors with consistency value; CR =0.097; value< 0.1, indicating, individual conditioning factors had an importance in influencing gully erosion. Slope (43%) and soil lithotype (25%), most influenced gully susceptibility, while land cover/land use (12%) and rainfall (12%) had least impact. Verification results showed satisfactory agreement between susceptibility map and field data on gullied areas at approximately 76.2%, an error of positive value of 4% and a negative value of 7%. Thus, production of susceptibility map by bivariate statistical method represents a useful tool for ending long and short-term gully emergencies by planning conservation of semi-arid regions.


2021 ◽  
Author(s):  
sara beheshtifar

Abstract Landslides are considered to be one of the most significant natural hazards. Detection of landslide-prone zones is an important phase in landslide hazard assessment and mitigation of landslide-related losses. AHP as one of the most effective methods for GIS-based multi-criteria decision analysis is increasingly being used in susceptibility mapping. However, its weights have some degree of uncertainty that interval comparison matrix (ICM) method can be used to deal with this problem. The importance of this study is to propose an interval number distance-based region growing (IDRG) method based on ICM for the identification of landslide-prone zones in the Urmia lake basin, Iran. To assess the capability of the proposed IDRG method, a landslide susceptibility map was produced using common AHP, too. To generate the maps, the weights of nine conditioning factors were determined using both traditional pairwise comparison matrices (PCM) of the AHP method and ICM. The accuracy of the produced maps was assessed through ROC (receiver operating curve) and using a dataset of known landslide occurrences. The results indicate an improvement in accuracy of about 11% by identifying the landslide-prone zones using the IDRG method. This improvement was achieved by minimizing the uncertainty associated with criteria ranking/weighting in a traditional AHP and identifying the prone zones as areas instead of pixels.


2021 ◽  
Author(s):  
Laurie Jayne Kurilla ◽  
Giandomenico Fubelli

Abstract. In a study of debris flow susceptibility on the European continent, an analysis of the impact between known location and a location accuracy offset for 99 debris flows, demonstrates the impact of uncertainty in defining appropriate predisposing factors, and consequent analysis for areas of susceptibility. The dominant predisposing environmental factors, as determined through Maximum Entropy modeling, are presented, and analyzed with respect to the values found at debris flow event points versus a buffered distance of locational uncertainty around each point. Five Maximum Entropy susceptibility models are developed utilizing the original debris flow inventory of points, randomly generated points, and two models utilizing a subset of points with an uncertainty of 5 km, 1 km, and a model utilizing only points with a known location of “exact”. The AUCs are 0.891, 0.893, 0.896, 0.921, and 0.93, respectively. The “exact” model, with the highest AUC, is ignored in final analyses due to the small number of points, and localized distribution, and hence susceptibility results likely non-representational of the continent. Each model is analyzed with respect to the AUC, highest contributing factors, factor classes, susceptibility impact, and comparisons of the susceptibility distributions and susceptibility value differences. Based on model comparisons, geographic extent and context of this study, the models utilizing points with a location uncertainty of less than or equal to 5 km best represent debris flow susceptibility of the continent of Europe. A novel representation of the uncertainty is expressed, and included in a final susceptibility map, as an overlay of standard deviation and mean of susceptibility values for the two best models, providing additional insight for subsequent action.


2021 ◽  
Vol 4 ◽  
pp. 1-4
Author(s):  
Jiping Liu ◽  
Rongfu Lin ◽  
Shenghua Xu ◽  
Yong Wang ◽  
Xianghong Che ◽  
...  

Abstract. Landslide is a natural disaster that has caused great property losses and human casualties in the world. To strengthen the target prevention and management level, ZhaShui county, Shaanxi province, is selected as the research area to evaluate the landslide susceptibility. First of all, under the premise of considering the correlation, 10 evaluation factors closely related to landslide disaster (i.e., elevation, rainfall, rock group, slope, slope aspect, vegetation index, landform, distance to residential area, distance to road, distance to river system) are taken together with non-landslide points, which are selected under multi-constraint conditions to form a sample data-set. Secondly, the sample dataset is substituted into the Support Vector Machine (SVM) model optimized by firefly algorithm for training and prediction. Finally, the result map was partitioned according to the natural discontinuous point method, and the landslide susceptibility map was obtained. The results show that the model optimized by the firefly algorithm has higher accuracy, and the landslide susceptibility results are more consistent with the actual distribution of disaster points.


2021 ◽  
Vol 930 (1) ◽  
pp. 012095
Author(s):  
R Aprilia ◽  
E Hidayah ◽  
D Junita K

Abstract Flood is one of the disaster threats downstream of Welang river, Pasuruan. A flood susceptibility map is needed to anticipate floods disasters. This research aimed to map flood Susceptibility in the Welang watershed using a Geographical Information System. In determining flood hazard, the Frequency Ratio (FR) approach was used. Flood locations were identified from the interpretation of field survey data as training data and model validation. The data were represented in a Digital Elevation Model (DEM) map, geological data, land use, river data, and Landsat Satellite Imagery and processed into a spatial database on the GIS platform. The factors that caused flooding consisted of Flood inventory, slope, Elevation, Topographic Wetness Index (TWI), Standardized Precipitation Index (SPI), Flow Accumulation, Distance to the river, River Density, Rainfall, Vegetation Index (NDVI), and Landuse. The map results with acceptable accuracy showed that the FR model gained an Area Under Curve (AUC) value of 90%, and the incidence for the Area Under Curve ( AUC ) was 93%. It is known that 1% of the flood-prone area is very high. The local Government can use the research to minimize the risk of flooding in the Welang watershed.


2021 ◽  
Vol 13 (23) ◽  
pp. 4776
Author(s):  
Taskin Kavzoglu ◽  
Alihan Teke ◽  
Elif Ozlem Yilmaz

Natural disaster impact assessment is of the utmost significance for post-disaster recovery, environmental protection, and hazard mitigation plans. With their recent usage in landslide susceptibility mapping, deep learning (DL) architectures have proven their efficiency in many scientific studies. However, some restrictions, including insufficient model variance and limited generalization capabilities, have been reported in the literature. To overcome these restrictions, ensembling DL models has often been preferred as a practical solution. In this study, an ensemble DL architecture, based on shared blocks, was proposed to improve the prediction capability of individual DL models. For this purpose, three DL models, namely Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM), together with their ensemble form (CNN–RNN–LSTM) were utilized to model landslide susceptibility in Trabzon province, Turkey. The proposed DL architecture produced the highest modeling performance of 0.93, followed by CNN (0.92), RNN (0.91), and LSTM (0.86). Findings proved that the proposed model excelled the performance of the DL models by up to 7% in terms of overall accuracy, which was also confirmed by the Wilcoxon signed-rank test. The area under curve analysis also showed a significant improvement (~4%) in susceptibility map accuracy by the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document