Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia

2014 ◽  
Vol 73 (7) ◽  
pp. 3745-3761 ◽  
Author(s):  
Ahmed M. Youssef ◽  
Biswajeet Pradhan ◽  
Mustafa Neamah Jebur ◽  
Hassan M. El-Harbi
2013 ◽  
Vol 1 (2) ◽  
pp. 957-1000 ◽  
Author(s):  
M. Fressard ◽  
Y. Thiery ◽  
O. Maquaire

Abstract. The objective of this paper is to assess the impact of the datasets quality for the landslide susceptibility mapping using multivariate statistical modelling methods at detailed scale. This research is conducted in the Pays d'Auge plateau (Normandy, France) with a scale objective of 1/10000, in order to fit the French guidelines on risk assessment. Five sets of data of increasing quality (considering accuracy, scale fitting, geomophological significance) and cost of acquisition are used to map the landslide susceptibility using logistic regression. The best maps obtained with each set of data are compared on the basis of different statistical accuracy indicators (ROC curves and relative error calculation), linear cross correlation and expert opinion. The results highlights that only high quality sets of data supplied with detailed geomorphological variables (i.e. field inventory and surficial formations maps) can predict a satisfying proportion of landslides on the study area.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 762 ◽  
Author(s):  
Renwei Li ◽  
Nianqin Wang

The main purpose of this study is to apply three bivariate statistical models, namely weight of evidence (WoE), evidence belief function (EBF) and index of entropy (IoE), and their ensembles with logistic regression (LR) for landslide susceptibility mapping in Muchuan County, China. First, a landslide inventory map contained 279 landslides was obtained through the field investigation and interpretation of aerial photographs. Next, the landslides were randomly divided into two parts for training and validation with the ratio of 70/30. In addition, according to the regional geological environment characteristics, twelve landslide conditioning factors were selected, including altitude, plan curvature, profile curvature, slope angle, distance to roads, distance to rivers, topographic wetness index (TWI), normalized different vegetation index (NDVI), land use, soil, and lithology. Subsequently, the landslide susceptibility mapping was carried out by the above models. Eventually, the accuracy of this research was validated by the area under the receiver operating characteristic (ROC) curve and the results indicated that the landslide susceptibility map produced by EBF-LR model has the highest accuracy (0.826), followed by IoE-LR model (0.825), WoE-LR model (0.792), EBF model (0.791), IoE model (0.778), and WoE model (0.753). The results of this study can provide references of landslide prevention and land use planning for local government.


Author(s):  
Amol Sharma ◽  
Chander Prakash

Landslide susceptibility mapping has proved to be crucial tool for effective disaster management and planning strategies in mountainous regions. The present study is perused to investigate the changes in the landslide susceptibility of the Mandi district of Himachal Pradesh due to road construction. For this purpose, an inventory of 1723 landslides was generated from various sources. Out of these, 1199 (70%) landslides were taken in the training dataset to be used for modelling and prediction purposes, while 524 (30%) landslides were taken in the testing dataset to be used for validation purposes. Eleven landslide causative factors were selected from numerous hydrological, geological and topographical factors and were analyzed for landslide susceptibility mapping using three bivariate statistical models, namely; Frequency Ratio (FR), Certainty Factor (CF) and Shanon Entropy (SE). Two sets of LSM maps i.e. landslide susceptibility map natural (LSMN) and landslide susceptibility map road (LSMR), were generated using the above mentioned bivariate models and were divided into five landslide susceptibility classes namely; very low, low, medium, high and very high. These maps were analyzed for accuracy of prediction and validation using receiver operating characteristic (ROC) curves and area under curve (AUC) technique which indicated that all three bivariate statistical models performed satisfactorily with the SE model had the highest prediction and validation accuracy of 83-86%. Further analysis LSM maps confirmed that the percentage area in high and very high classes of land-slide susceptibility increased by 2.67-4.17% due to road construction activities in the study area.


2010 ◽  
Vol 10 (9) ◽  
pp. 1851-1864 ◽  
Author(s):  
F. Mancini ◽  
C. Ceppi ◽  
G. Ritrovato

Abstract. This study focuses on landslide susceptibility mapping in the Daunia area (Apulian Apennines, Italy) and achieves this by using a multivariate statistical method and data processing in a Geographical Information System (GIS). The Logistic Regression (hereafter LR) method was chosen to produce a susceptibility map over an area of 130 000 ha where small settlements are historically threatened by landslide phenomena. By means of LR analysis, the tendency to landslide occurrences was, therefore, assessed by relating a landslide inventory (dependent variable) to a series of causal factors (independent variables) which were managed in the GIS, while the statistical analyses were performed by means of the SPSS (Statistical Package for the Social Sciences) software. The LR analysis produced a reliable susceptibility map of the investigated area and the probability level of landslide occurrence was ranked in four classes. The overall performance achieved by the LR analysis was assessed by local comparison between the expected susceptibility and an independent dataset extrapolated from the landslide inventory. Of the samples classified as susceptible to landslide occurrences, 85% correspond to areas where landslide phenomena have actually occurred. In addition, the consideration of the regression coefficients provided by the analysis demonstrated that a major role is played by the "land cover" and "lithology" causal factors in determining the occurrence and distribution of landslide phenomena in the Apulian Apennines.


Sign in / Sign up

Export Citation Format

Share Document