scholarly journals The decay of the SU(2) Yang–Mills fields on the Schwarzschild black hole for spherically symmetric small energy initial data

2018 ◽  
Vol 123 ◽  
pp. 310-342
Author(s):  
Sari Ghanem ◽  
Dietrich Häfner
2008 ◽  
Vol 23 (08) ◽  
pp. 591-601 ◽  
Author(s):  
JERZY MATYJASEK

It is shown that for the spherically-symmetric and static systems the hypotheses posed by Yang and Radinschi and by Vagenas can be related to the particular distribution of the source. Simple proofs are given and a number of examples are discussed with the special emphasis put on the quantum corrected Schwarzschild black hole.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050163 ◽  
Author(s):  
Ali Övgün ◽  
İzzet Sakallı ◽  
Joel Saavedra ◽  
Carlos Leiva

We study the shadow and energy emission rate of a spherically symmetric noncommutative black hole in Rastall gravity. Depending on the model parameters, the noncommutative black hole can reduce to the Schwarzschild black hole. Since the nonvanishing noncommutative parameter affects the formation of event horizon, the visibility of the resulting shadow depends on the noncommutative parameter in Rastall gravity. The obtained sectional shadows respect the unstable circular orbit condition, which is crucial for physical validity of the black hole image model.


2014 ◽  
Vol 92 (1) ◽  
pp. 46-50
Author(s):  
De-Jiang Qi

Recently, via adiabatic invariance, Majhi and Vagenas quantized the horizon area of the general class of a static spherically symmetric space–time. Very recently, applying the period of the gravity system with respect to the Euclidean time, Zeng and Liu derived area spectra of a Schwarzschild black hole and a Kerr black hole. It is noteworthy that the preceding methods are not useful for the quasi-normal modes. In this paper, based on those works, and as a further study, adopting near horizon approximation, applying the laws of black hole thermodynamics, we would like to investigate the black hole spectroscopy from a class of Plebański and Demiański space–times by using two different methods. The result shows that the area spectrum of the black hole is [Formula: see text], which confirms the initial proposal of Bekenstein, and the result is consistent with that already obtained by Maggiore with quasi-normal modes.


2016 ◽  
Vol 12 (S324) ◽  
pp. 351-352 ◽  
Author(s):  
Farruh Atamurotov

AbstractWe have investigated particle motion around Schwarzschild black holes in the presence of a plasma with radial power-law density profile has been shown that the photon sphere around a spherically symmetric black hole is unchanged under the influence of the plasma; however, the Schwarzschild black hole shadow size is reduced due to the refraction of electromagnetic radiation in the plasma environment of the black hole.


1997 ◽  
Vol 12 (35) ◽  
pp. 2683-2689 ◽  
Author(s):  
W. Kummer ◽  
H. Liebl ◽  
D. V. Vassilevich

It is well known that spherically symmetric reduction of general relativity (SSG) leads to non-minimally coupled scalar matter. We generalize (and correct) recent results to Hawking radiation for a class of dilaton models which share with the Schwarzschild black hole non-minimal coupling of scalar fields and the basic global structure. An inherent ambiguity of such models (if they differ from SSG) is discussed. However, for SSG we obtain the rather disquieting result of a negative Hawking flux at infinity, if the usual recipe for such calculations is applied.


2018 ◽  
Vol 33 (14n15) ◽  
pp. 1850084 ◽  
Author(s):  
Sunandan Gangopadhyay ◽  
Biplab Paik ◽  
Rituparna Mandal

In this paper, we investigate the problem of ordinary baryonic matter accretion onto the noncommutative (NC) geometry-inspired Schwarzschild black hole. The fundamental equations governing the spherically symmetric steady state matter accretion are deduced. These equations are seen to be modified due to the presence of noncommutativity. The matter accretion rate is computed and is found to increase rapidly with the increase in strength of the NC parameter. The sonic radius reduces while the sound speed at the sonic point increases with the increase in the strength of noncommutativity. The profile of the thermal environment is finally investigated below the sonic radius and at the event horizon and is found to be affected by noncommutativity.


1999 ◽  
Vol 14 (38) ◽  
pp. 2635-2648 ◽  
Author(s):  
S. KALYANA RAMA ◽  
B. SATHIAPALAN

The question of how infalling matter in a pure state forms a Schwarzschild black hole that appears to be at nonzero temperature is discussed in the context of the AdS/CFT connection. It is argued that the phenomenon of self-thermalization in nonlinear (chaotic) systems can be invoked to explain how the boundary theory, initially at zero temperature self thermalizes and acquires a finite temperature. Yang–Mills theory is known to be chaotic (classically) and the imaginary part of the gluon self-energy (damping rate of the gluon plasma) is expected to give the Lyapunov exponent. We explain how the imaginary part would arise in the corresponding supergravity calculation due to absorption at the horizon of the black hole.


Sign in / Sign up

Export Citation Format

Share Document