scholarly journals Second order Lagrangian dynamics on double cross product groups

2021 ◽  
Vol 159 ◽  
pp. 103934
Author(s):  
Oğul Esen ◽  
Mahmut Kudeyt ◽  
Serkan Sütlü
2012 ◽  
Vol 27 (10) ◽  
pp. 1250062
Author(s):  
CONSTANTIN BIZDADEA ◽  
MARIA-MAGDALENA BÂRCAN ◽  
MIHAELA TINCA MIAUTĂ ◽  
SOLANGE-ODILE SALIU

By means of a class of nondegenerate models with a finite number of degrees of freedom, it is proved that given a Hamiltonian formulation of dynamics, there exists an equivalent second-order Lagrangian formulation whose configuration space coincides with the Hamiltonian phase-space. The above result is extended to scalar field theories in a Lorentz-covariant manner.


Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Sign in / Sign up

Export Citation Format

Share Document