Machine learning for creation of generalized lumped parameter tank models of low temperature geothermal reservoir systems

Geothermics ◽  
2017 ◽  
Vol 70 ◽  
pp. 62-84 ◽  
Author(s):  
Y. Li ◽  
E. Júlíusson ◽  
H. Pálsson ◽  
H. Stefánsson ◽  
Á. Valfells
Geothermics ◽  
2005 ◽  
Vol 34 (6) ◽  
pp. 728-755 ◽  
Author(s):  
Hulya Sarak ◽  
Mustafa Onur ◽  
Abdurrahman Satman

Author(s):  
Yi Dong ◽  
Yu Zhang ◽  
Mingchu Ran ◽  
Xiao Zhang ◽  
Shaojun Liu ◽  
...  

A machine learning approach for SCR catalyst discovery is presented to realize the rapid screening of optimal catalysts.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wazif Sallehhudin ◽  
Aya Diab

In this paper the use of machine learning (ML) is explored as an efficient tool for uncertainty quantification. A machine learning algorithm is developed to predict the peak cladding temperature (PCT) under the conditions of a large break loss of coolant accident given the various underlying uncertainties. The best estimate approach is used to simulate the thermal-hydraulic system of APR1400 large break loss of coolant accident (LBLOCA) scenario using the multidimensional reactor safety analysis code (MARS-KS) lumped parameter system code developed by Korea Atomic Energy Research Institute (KAERI). To generate the database necessary to train the ML model, a set of uncertainty parameters derived from the phenomena identification and ranking table (PIRT) is propagated through the thermal hydraulic model using the Dakota-MARS uncertainty quantification framework. The developed ML model uses the database created by the uncertainty quantification framework along with Keras library and Talos optimization to construct the artificial neural network (ANN). After learning and validation, the ML model can predict the peak cladding temperature (PCT) reasonably well with a mean squared error (MSE) of ∼0.002 and R2 of ∼0.9 with 9 to 11 key uncertain parameters. As a bounding accident scenario analysis of the LBLOCA case paves the way to using machine learning as a decision making tool for design extension conditions as well as severe accidents.


2003 ◽  
Vol 26 (3) ◽  
pp. 151-166 ◽  
Author(s):  
Abdul-Majeed Azad ◽  
Toh Yen Pang ◽  
Mohammad A. Alim

The perovskite-structuredSrSnO3possessing steady capacitance over the temperature range between 27°C and 300°C in a frequency domain spanning nearly four decades has been evaluated. The samples investigated in this study were synthesized by using solid-state reaction (SSR) and self-heat-sustained (SHS) techniques. These samples were sintered at a temperature (T ) ranging between 1200°C and 1600°C with a soak-time (t) ranging between 2 h and 60 h. The ac immittance (impedance or admittance) measurements were conducted on these sintered bodies in the frequency range 5Hz to 13 MHz. These ac electrical data were found to exhibit relaxation in more than one complex plane formalisms in a simultaneous manner. The magnitude of the terminal capacitance was found to be in a narrow window of 3 pF to 6 pF possessing very weak temperature dependence. Further analysis also revealed that this material system possessed low dielectric constant and ultra-low temperature coefficient of capacitance (TCC) or dielectric constant (TCK). The electrical behavior of these sintered bodies has been systematically correlated with the evolved microstructures. Plausible equivalent circuit elements were extracted using the lumped parameter/complex plane analysis (LP/CPA) and evaluated at various situations.


Sign in / Sign up

Export Citation Format

Share Document