Effective parameters on the performance of ground heat exchangers: A review of latest advances

Geothermics ◽  
2022 ◽  
Vol 98 ◽  
pp. 102283
Author(s):  
Bin Liang ◽  
Meiqian Chen ◽  
Yasin Orooji
2021 ◽  
Vol 171 ◽  
pp. 592-605
Author(s):  
Lazaros Aresti ◽  
Paul Christodoulides ◽  
Georgios A. Florides

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2134
Author(s):  
Luka Boban ◽  
Dino Miše ◽  
Stjepan Herceg ◽  
Vladimir Soldo

With the constant increase in energy demand, using renewable energy has become a priority. Geothermal energy is a widely available, constant source of renewable energy that has shown great potential as an alternative source of energy in achieving global energy sustainability and environment protection. When exploiting geothermal energy, whether is for heating or cooling buildings or generating electricity, a ground heat exchanger (GHE) is the most important component, whose performance can be easily improved by following the latest design aspects. This article focuses on the application of different types of GHEs with attention directed to deep vertical borehole heat exchangers and direct expansion systems, which were not dealt with in detail in recent reviews. The article gives a review of the most recent advances in design aspects of GHE, namely pipe arrangement, materials, and working fluids. The influence of the main design parameters on the performance of horizontal, vertical, and shallow GHEs is discussed together with commonly used performance indicators for the evaluation of GHE. A survey of the available literature shows that thermal performance is mostly a point of interest, while hydraulic and/or economic performance is often not addressed, potentially resulting in non-optimal GHE design.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


Energy ◽  
2013 ◽  
Vol 58 ◽  
pp. 655-663 ◽  
Author(s):  
G. Florides ◽  
E. Theofanous ◽  
I. Iosif-Stylianou ◽  
S. Tassou ◽  
P. Christodoulides ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document