Glacier change in Garibaldi Provincial Park, southern Coast Mountains, British Columbia, since the Little Ice Age

2009 ◽  
Vol 66 (3-4) ◽  
pp. 161-178 ◽  
Author(s):  
Johannes Koch ◽  
Brian Menounos ◽  
John J. Clague
2007 ◽  
Vol 44 (9) ◽  
pp. 1215-1233 ◽  
Author(s):  
Johannes Koch ◽  
John J Clague ◽  
Gerald D Osborn

The Little Ice Age glacier history in Garibaldi Provincial Park (southern Coast Mountains, British Columbia) was reconstructed using geomorphic mapping, radiocarbon ages on fossil wood in glacier forefields, dendrochronology, and lichenometry. The Little Ice Age began in the 11th century. Glaciers reached their first maximum of the past millennium in the 12th century. They were only slightly more extensive than today in the 13th century, but advanced at least twice in the 14th and 15th centuries to near their maximum Little Ice Age positions. Glaciers probably fluctuated around these advanced positions from the 15th century to the beginning of the 18th century. They achieved their greatest extent between A.D. 1690 and 1720. Moraines were deposited at positions beyond present-day ice limits throughout the 19th and early 20th centuries. Glacier fluctuations appear to be synchronous throughout Garibaldi Park. This chronology agrees well with similar records from other mountain ranges and with reconstructed Northern Hemisphere temperature series, indicating global forcing of glacier fluctuations in the past millennium. It also corresponds with sunspot minima, indicating that solar irradiance plays an important role in late Holocene climate change.


2004 ◽  
Vol 41 (8) ◽  
pp. 903-918 ◽  
Author(s):  
Alberto V Reyes ◽  
John J Clague

Holocene lateral moraines in the Coast Mountains of British Columbia are commonly composed of multiple drift units related to several glacier advances. In this paper, we document lateral moraine stratigraphy at Lillooet Glacier in the southern Coast Mountains. Five tills, separated by laterally extensive paleosols and layers of large woody debris, were found in three cross-sectional exposures through the northeast lateral moraine and two shallow gullies incised into its steep proximal face. Eighteen new radiocarbon ages constrain the timing of five separate advances of Lillooet Glacier: (1) prior to 3000 14C years BP; (2) ~3000 14C years BP; (3) ~2500 14C years BP; (4) ~1700 to 1400 14C years BP; and (5) during the Little Ice Age (LIA), after 470 14C years BP. The Lillooet Glacier chronology is broadly synchronous with other glacier records from the Coast Mountains. These records collectively demonstrate climate variability at higher frequencies during the late Holocene than is apparent from many paleoecological reconstructions. Reconstructions of glacier fluctuations are often hampered by poor preservation of landforms that predate the extensive LIA advances of the latest Holocene. Our results highlight the potential of lateral moraine stratigraphy for reconstructing these earlier events.


2003 ◽  
Vol 40 (10) ◽  
pp. 1413-1436 ◽  
Author(s):  
S J Larocque ◽  
D J Smith

The establishment of fourteen Little Ice Age (LIA) glacier chronologies in the Mt. Waddington area led to the development of an extended history of glacial activity in this portion of the southern British Columbia Coast Mountains, Canada. The glaciers were located within four different mountain ranges, and were of varying size and aspect. Dendrochronological and lichenometric techniques were used to provide relative age estimates of moraines formed as glacier termini retreated from advanced positions. Evidence for pre-LIA glacial events is best preserved at Tiedemann Glacier, where the oldest glacial advances date to A.D. 620 and 925–933. Soil-covered and well-vegetated moraines built at Cathedral, Pagoda, and Siva glaciers date to between A.D. 1203 and 1226. Following this event, moraines constructed at Ragnarok, Siva, and Cathedral glaciers in the mid-14th century suggest glaciers in the region underwent a period of downwasting and retreat before readvancing. The majority of moraines recorded in the Mt. Waddington area describe late-LIA glacial events shown to have constructed moraines that date to A.D. 1443–1458, 1506–1524, 1562–1575, 1597–1621, 1657–1660, 1767–1784, 1821–1837, 1871–1900, 1915–1928, and 1942–1946. Over the last 500 years, these moraine-building episodes were shown to occur on average every 65 years and suggest there has been prolonged synchronicity in the glaciological response to persistent climate-forcing mechanisms. Nevertheless, our analysis suggests that local factors, such as aspect and size, play an important role in individual glacial response. Notably, ice termini of medium-size glaciers facing eastwards showed a quicker response to climatically induced mass balance changes.


2012 ◽  
Vol 78 (3) ◽  
pp. 417-426 ◽  
Author(s):  
Kara J. Pitman ◽  
Dan J. Smith

AbstractMost glaciers in the British Columbia Coast Mountains reached their maximum Holocene extent during the Little Ice Age. Early- and late-Little Ice Age intervals of expansion and retreat fluctuations describe a mass-balance response to changing climates. Although existing dendroclimatic records provide insights into these climatic fluctuations over the last 400 yr, their short durations prohibit evaluation of early-Little Ice Age climate variability. To extend the duration of these records, submerged coarse woody debris salvaged from a high-elevation lake was cross-dated to living chronologies. The resulting chronology provides the opportunity to reconstruct a regional June–July air-temperature anomaly record extending from AD 1225 to 2010. The reconstruction shows that the intervals AD 1350–1420, 1475–1550, 1625–1700 and 1830–1940 characterized distinct periods of below-average June–July temperature followed by periods of above-average temperature. Our reconstruction provides the first annually resolved insights into high-elevation climates spanning the Little Ice Age in this region and indicates that Little Ice Age moraine stabilization corresponds to persistent intervals of warmer-than-average temperatures. We conclude that coarse woody debris submerged in high-elevation lakes has considerable potential for developing lengthy proxy climate records, and we recommend that researchers focus attention on this largely ignored paleoclimatic archive.


2017 ◽  
Vol 54 (1) ◽  
pp. 76-87 ◽  
Author(s):  
Vikki M. St-Hilaire ◽  
Dan J. Smith

Frank Mackie Glacier repeatedly advanced across the Bowser River valley in northwestern British Columbia to impound Tide Lake during the Holocene. The most recent infilling of Tide Lake was associated with a late Little Ice Age glacier advance and ended around 1930 when the lake catastrophically drained. Over the last century Frank Mackie Glacier has retreated and down wasted to reveal multiple glaciogenic sedimentary units within the proximal faces of prominent lateral moraines. The units are separated by buried in-situ tree stumps and laterally contiguous wood mats deposited on paleosols. Dendroglaciological and radiocarbon dating of these wood remains show that Frank Mackie Glacier expanded into standing forests at 3710–3300, 2700–2200, 1700–1290, 900–500, and 250–100 cal. years BP. These advances coincide closely in time with the previously established Tide Lake glacier dam chronology and with the Holocene history of other glaciers in the Bowser River watershed. The findings emphasize the likelihood that most glaciers within northwestern British Columbia underwent substantial size and mass balance changes over the last 4000 years, and often spent hundreds of years in advanced positions before retreating.


2007 ◽  
Vol 44 (5) ◽  
pp. 707-719 ◽  
Author(s):  
T A Arsenault ◽  
John J Clague ◽  
R W Mathewes

Moraine Bog lies just outside the outermost lateral moraine of Tiedemann Glacier in the southern Coast Mountains of British Columbia. A sediment core taken from the wetland was analyzed for pollen, magnetic susceptibility, and loss on ignition to reconstruct changes in vegetation and climate during the late Holocene. Vegetation changed little between about 3500 and 2400 14C years BP. A period of local disturbance marked by deposition of a silty clay bed and increases in Alnus pollen, likely reflecting cooler moister conditions, coincides with an extensive Holocene advance of Tiedemann Glacier about 2400 14C years BP. Warm dry conditions between about 1900 and 1500 14C years BP are suggested by peak values of Pseudotsuga pollen and increasing Nuphar sclereids; the latter suggests lowered water levels. This period coincides with a time of drought and increased fire frequency in the southernmost Coast Mountains. About 1300 14C years BP, the forest became more coastal in composition with abundant Tsuga heterophylla and Abies. An increase in Tsuga mertensiana pollen suggests the onset of cool and wet conditions by ca. 500 14C years BP, coincident with the Little Ice Age. The record of inferred climate change at Moraine Bog is broadly synchronous with other paleoclimate records from the Coast Mountains and, at the centennial scale, with records elsewhere in the world.


1990 ◽  
Vol 27 (2) ◽  
pp. 281-290 ◽  
Author(s):  
J. R. Desloges ◽  
J. M. Ryder

The maximum Holocene extent of glaciers in the study area is marked by late Neoglacial (Little Ice Age) terminal moraines. Moraine stratigraphy and 14C dates from a small number of sites suggest that glacier advance, almost as extensive as that of the late Neoglacial, occurred about 2500 14C years BP, and that late Neoglacial advance began well before 770 14C years BP (or the thirteenth century A.D.); glacier termini then stood close to the position of the climax moraines for several centuries. Dates of stabilization of end moraines at 16 glaciers were determined by dendrochronology, with tree-ring counts corrected for sampling errors and ecesis. Most terminal moraines date from 1860 to 1900. Many recessional moraines were formed between 1900 and 1940, coincident with a regionally documented phase of cooler and wetter climate. The proposed chronology is similar to results from elsewhere in the Canadian Cordillera.


2002 ◽  
Vol 54 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Dan J. Smith ◽  
Joseph R. Desloges

Abstract This paper describes licheno- metric and dendroglaciological investigations of Little Ice Age (LIA) deposits at Tzeetsaytsul Glacier, Tweedsmuir Provincial Park, British Columbia. The glacier originates from an ice- field on the northeast flank of Tzeetsaytsul Peak and terminates in a moraine-dammed lake. A stream draining the lake has incised the moraine dam and flows through nested moraines into a second lake. Two end moraines near the lower lake record separate advances, with numerous morainic ridges found between the two lakes. A locally calibrated Rhizocarpon geographicum growth curve was constructed and provides relative ages for all the moraines. Absolute dates from wood fragments collected from within the morainic debris were determined by matching their annual growth ring patterns to a local Abies lasiocarpa tree-ring chronology. The outermost terminal moraine was deposited by a 17th century advance that culminated in ca. 1700. Following subsequent recession, Tzeetsaytsul Glacier readvanced to build a second terminal moraine by the mid-1800s. Recession of this glacier occurred within 40 years and by 1935 the glacier was beginning to calve into the uppermost lake. The research shows that the most recent LIA advance of Tzeetsaytsul Glacier was not the most extensive, and that multiple events characterized the late-LIA. Application of the Rhizocarpon growth curve indicates a previously unreported 17th century advance at other glaciers in the region. These findings serve to reinforce the synchroneity of late-LIA glacier fluctuations within the coastal cordillera of NW North America suggesting that they record regional climate forcing.


Sign in / Sign up

Export Citation Format

Share Document