Neoglacial history of the Coast Mountains near Bella Coola, British Columbia

1990 ◽  
Vol 27 (2) ◽  
pp. 281-290 ◽  
Author(s):  
J. R. Desloges ◽  
J. M. Ryder

The maximum Holocene extent of glaciers in the study area is marked by late Neoglacial (Little Ice Age) terminal moraines. Moraine stratigraphy and 14C dates from a small number of sites suggest that glacier advance, almost as extensive as that of the late Neoglacial, occurred about 2500 14C years BP, and that late Neoglacial advance began well before 770 14C years BP (or the thirteenth century A.D.); glacier termini then stood close to the position of the climax moraines for several centuries. Dates of stabilization of end moraines at 16 glaciers were determined by dendrochronology, with tree-ring counts corrected for sampling errors and ecesis. Most terminal moraines date from 1860 to 1900. Many recessional moraines were formed between 1900 and 1940, coincident with a regionally documented phase of cooler and wetter climate. The proposed chronology is similar to results from elsewhere in the Canadian Cordillera.

2017 ◽  
Vol 54 (1) ◽  
pp. 76-87 ◽  
Author(s):  
Vikki M. St-Hilaire ◽  
Dan J. Smith

Frank Mackie Glacier repeatedly advanced across the Bowser River valley in northwestern British Columbia to impound Tide Lake during the Holocene. The most recent infilling of Tide Lake was associated with a late Little Ice Age glacier advance and ended around 1930 when the lake catastrophically drained. Over the last century Frank Mackie Glacier has retreated and down wasted to reveal multiple glaciogenic sedimentary units within the proximal faces of prominent lateral moraines. The units are separated by buried in-situ tree stumps and laterally contiguous wood mats deposited on paleosols. Dendroglaciological and radiocarbon dating of these wood remains show that Frank Mackie Glacier expanded into standing forests at 3710–3300, 2700–2200, 1700–1290, 900–500, and 250–100 cal. years BP. These advances coincide closely in time with the previously established Tide Lake glacier dam chronology and with the Holocene history of other glaciers in the Bowser River watershed. The findings emphasize the likelihood that most glaciers within northwestern British Columbia underwent substantial size and mass balance changes over the last 4000 years, and often spent hundreds of years in advanced positions before retreating.


2017 ◽  
Vol 54 (11) ◽  
pp. 1153-1164 ◽  
Author(s):  
B.H. Luckman ◽  
M.H. Masiokas ◽  
K. Nicolussi

As glaciers in the Canadian Rockies recede, glacier forefields continue to yield subfossil wood from sites overridden by these glaciers during the Holocene. Robson Glacier in British Columbia formerly extended below tree line, and recession over the last century has progressively revealed a number of buried forest sites that are providing one of the more complete records of glacier history in the Canadian Rockies during the latter half of the Holocene. The glacier was advancing ca. 5.5 km upvalley of the Little Ice Age terminus ca. 5.26 cal ka BP, at sites ca. 2 km upvalley ca. 4.02 cal ka BP and ca. 3.55 cal ka BP, and 0.5–1 km upvalley between 1140 and 1350 A.D. There is also limited evidence based on detrital wood of an additional period of glacier advance ca. 3.24 cal ka BP. This record is more similar to glacier histories further west in British Columbia than elsewhere in the Rockies and provides the first evidence for a post-Hypsithermal glacier advance at ca. 5.26 cal ka BP in the Rockies. The utilization of the wiggle-matching approach using multiple 14C dates from sample locations determined by dendrochronological analyses enabled the recognition of 14C outliers and an increase in the precision and accuracy of the dating of glacier advances.


2003 ◽  
Vol 40 (10) ◽  
pp. 1413-1436 ◽  
Author(s):  
S J Larocque ◽  
D J Smith

The establishment of fourteen Little Ice Age (LIA) glacier chronologies in the Mt. Waddington area led to the development of an extended history of glacial activity in this portion of the southern British Columbia Coast Mountains, Canada. The glaciers were located within four different mountain ranges, and were of varying size and aspect. Dendrochronological and lichenometric techniques were used to provide relative age estimates of moraines formed as glacier termini retreated from advanced positions. Evidence for pre-LIA glacial events is best preserved at Tiedemann Glacier, where the oldest glacial advances date to A.D. 620 and 925–933. Soil-covered and well-vegetated moraines built at Cathedral, Pagoda, and Siva glaciers date to between A.D. 1203 and 1226. Following this event, moraines constructed at Ragnarok, Siva, and Cathedral glaciers in the mid-14th century suggest glaciers in the region underwent a period of downwasting and retreat before readvancing. The majority of moraines recorded in the Mt. Waddington area describe late-LIA glacial events shown to have constructed moraines that date to A.D. 1443–1458, 1506–1524, 1562–1575, 1597–1621, 1657–1660, 1767–1784, 1821–1837, 1871–1900, 1915–1928, and 1942–1946. Over the last 500 years, these moraine-building episodes were shown to occur on average every 65 years and suggest there has been prolonged synchronicity in the glaciological response to persistent climate-forcing mechanisms. Nevertheless, our analysis suggests that local factors, such as aspect and size, play an important role in individual glacial response. Notably, ice termini of medium-size glaciers facing eastwards showed a quicker response to climatically induced mass balance changes.


2007 ◽  
Vol 44 (9) ◽  
pp. 1215-1233 ◽  
Author(s):  
Johannes Koch ◽  
John J Clague ◽  
Gerald D Osborn

The Little Ice Age glacier history in Garibaldi Provincial Park (southern Coast Mountains, British Columbia) was reconstructed using geomorphic mapping, radiocarbon ages on fossil wood in glacier forefields, dendrochronology, and lichenometry. The Little Ice Age began in the 11th century. Glaciers reached their first maximum of the past millennium in the 12th century. They were only slightly more extensive than today in the 13th century, but advanced at least twice in the 14th and 15th centuries to near their maximum Little Ice Age positions. Glaciers probably fluctuated around these advanced positions from the 15th century to the beginning of the 18th century. They achieved their greatest extent between A.D. 1690 and 1720. Moraines were deposited at positions beyond present-day ice limits throughout the 19th and early 20th centuries. Glacier fluctuations appear to be synchronous throughout Garibaldi Park. This chronology agrees well with similar records from other mountain ranges and with reconstructed Northern Hemisphere temperature series, indicating global forcing of glacier fluctuations in the past millennium. It also corresponds with sunspot minima, indicating that solar irradiance plays an important role in late Holocene climate change.


2013 ◽  
Vol 50 (12) ◽  
pp. 1195-1208 ◽  
Author(s):  
Jessica A. Craig ◽  
Dan J. Smith

Scimitar Glacier originates below the northeast face of Mt. Waddington in the southern British Columbia Coast Mountains and flows 18 km down valley to calve into a proglacial lake. At several locations, downwasting of the glacier surface has exposed stacked till units separated by wood-bearing horizons in the proximal slopes of lateral moraines flanking the glacier. Historical moraine collapse and erosional breaching has also revealed the remains of standing trees buried in moraine-dammed lake sediments. Radiocarbon and tree-ring dating show that Scimitar Glacier expanded down valley at least three times in the late Holocene. The earliest evidence found for ice expansion indicates Scimitar Glacier was advancing in 3167–2737 cal years BP in association with the regional Tiedemann Advance. Following this advance, the glacier downwasted prior to expanding in 1568–1412 cal years BP during the First Millennial Advance. A final period phase of moraine construction was initiated during late Little Ice Age glacial expansion before A.D. 1742 and extended until at least A.D. 1851, after which Scimitar Glacier began to recede and downwaste. This record is comparable to that recorded at other glaciers in the southern British Columbia Coast Mountains and confirms the long-term relationship between regional climate trends and glacier behaviour in this setting.


2007 ◽  
Vol 50 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Daniel J. Smith ◽  
Colin P. Laroque

ABSTRACT Dendrochronological investigations at Moving Glacier provide the first calendar-dating of a Little Ice Age glacier advance on Vancouver Island. In 1931, Moving Glacier was within 30 to 50 m of a distinct trimline and terminal moraine marking its maximum Little Ice Age extent. A reconnaissance of the site in 1993 revealed the presence of sheared in situ stumps and detrital trunks inside the 1931 ice limit. Sampling in 1994 showed the site was covered by a mature subalpine forest prior to the glacial advance which overrode the site after 1718 A.D. Following this period of expansion, which saw Moving Glacier expand to its maximum Little Ice Age position after 1818 A.D., the glacier apparently experienced only minimal retreat prior to first being photographed in 1931.


1992 ◽  
Vol 29 (11) ◽  
pp. 2383-2396 ◽  
Author(s):  
John J. Clague ◽  
William H. Mathews

Tide Lake was the largest glacier-dammed lake in British Columbia before its demise in the early twentieth century. Situated in the northern Coast Mountains, the lake was impounded by Frank Mackie Glacier and its Neoglacial end moraine. A study of Tide Lake has provided information on styles of glaciolacustrine sedimentation and the chronology of the Neoglacial interval.Much of the sediment underlying the floor of Tide Lake was transported by subglacial and proglacial meltwater streams flowing from nearby glaciers. During the last phase of the lake, large subaqueous fans were built in front of Berendon and Frank Mackie glaciers, and deltas formed on the east side of the basin. Rhythmically bedded fine sediments, which cover much of the lake floor but are almost completely lacking on the slopes above, were deposited from underflows originating on deltas and subaqueous fans and by fallout from interflows and overflows.Three major and one minor lake phases are recognized from stratigraphic, geomorphic, radiocarbon, and dendrochronological data: the earliest phase is undated, but older than 3000 BP (1300 B.C.); the second phase has yielded radiocarbon ages of 2600–2700 BP (800–1000 B.C.); a third, minor phase, during which Tide Lake was restricted to the northern part of the basin, began before 1600 BP (A.D. 350–550) and probably ended a few hundred years later; the last phase may have begun as early as 1000 BP (A.D. 1000–1150), peaked in the seventeenth century, and ended in the early twentieth century. During each of the four phases, Tide Lake fluctuated in a complex fashion and at times was empty. The second phase corresponds to a widely recognized middle Neoglacial advance in western North America; the last phase is coincident with the Little Ice Age. Outburst floods from Tide Lake in the nineteenth and early twentieth centuries devastated Bowser River valley as far downstream as Bowser Lake. The last of the floods occurred around A.D. 1930 when the Frank Mackie moraine was breached and the lake emptied for the last time.


Sign in / Sign up

Export Citation Format

Share Document