Sunspot cycles recorded in Eocene lacustrine fine-grained sedimentary rocks in the Bohai Bay Basin, eastern China

2021 ◽  
pp. 103614
Author(s):  
Juye Shi ◽  
Zhijun Jin ◽  
Quanyou Liu ◽  
Tailiang Fan ◽  
Zhiqian Gao
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ledan Yu ◽  
Jun Peng ◽  
Tianyu Xu ◽  
Yubin Wang ◽  
Haodong Han

With the further exploration and development of shale oil and gas, cycle division of fine-grained sedimentary rock strata has been increasingly highly focused on by scholars. Owing to the application of the theory of classical sequence stratigraphy based on water depth changes and its technical methods being unsatisfactory in the isochronous division and correlation of deep-water fine-grained sedimentary strata, the cycle division of fine-grained sedimentary rock strata has always been a difficult point in the study of sequence stratigraphy. In this paper, the Milankovitch cycle recorded from the study interval and the environment response characteristics were studied, with the lacustrine shale in the lower third submember of the Paleogene Shahejie Formation (lower Es3 submember) in Well Fanye-1 of the Dongying sag, Bohai Bay Basin, as the object of study, by such technical means as thin section identification and X-ray whole rock diffraction, based on such data as logging data and geochemistry, combining the methods of spectral analysis, wavelet transform, and modulus extremum. The results showed that the stratigraphic cycle thicknesses caused by long eccentricity, short eccentricity, and obliquity periods were 38.95 m, 12.98 m, and 4.10 m, respectively, and a total of 16 short eccentricity periods and 4.5 long eccentricity periods were identified in the study interval. Thus, it was further calculated that the sedimentation time was approximately 1.905 Ma, and the average sedimentation rate was estimated to be 0.105 m/ka. Studies have shown that the sedimentary environment of lacustrine fine-grained sedimentary rocks is controlled by the astronomical period, based on which the climate as a whole changes from relatively dry and cold to warm and wet when the eccentricity increases. The identification of the Milankovitch cycle of the lacustrine fine-grained sedimentary strata will provide references for the study of high frequency sequence and the division of high-resolution sequence strata, which can effectively solve the scientifically difficult isochronous division and correlation of lacustrine shale strata.


2021 ◽  
pp. 014459872110310
Author(s):  
Min Li ◽  
Xiongqi Pang ◽  
Guoyong Liu ◽  
Di Chen ◽  
Lingjian Meng ◽  
...  

The fine-grained rocks in the Paleogene Shahejie Formation in Nanpu Sag, Huanghua Depression, Bohai Bay Basin, are extremely important source rocks. These Paleogene rocks are mainly subdivided into organic-rich black shale and gray mudstone. The average total organic carbon contents of the shale and mudstone are 11.5 wt.% and 8.4 wt.%, respectively. The average hydrocarbon (HC)-generating potentials (which is equal to the sum of free hydrocarbons (S1) and potential hydrocarbons (S2)) of the shale and mudstone are 39.3 mg HC/g rock and 28.5 mg HC/g rock, respectively, with mean vitrinite reflectance values of 0.82% and 0.81%, respectively. The higher abundance of organic matter in the shale than in the mudstone is due mainly to paleoenvironmental differences. The chemical index of alteration values and Na/Al ratios reveal a warm and humid climate during shale deposition and a cold and dry climate during mudstone deposition. The biologically derived Ba and Ba/Al ratios indicate high productivity in both the shale and mudstone, with relatively low productivity in the shale. The shale formed in fresh to brackish water, whereas the mudstone was deposited in fresh water, with the former having a higher salinity. Compared with the shale, the mudstone underwent higher detrital input, exhibiting higher Si/Al and Ti/Al ratios. Shale deposition was more dysoxic than mudstone deposition. The organic matter enrichment of the shale sediments was controlled mainly by reducing conditions followed by moderate-to-high productivity, which was promoted by a warm and humid climate and salinity stratification. The organic matter enrichment of the mudstone was less than that of the shale and was controlled by relatively oxic conditions.


2021 ◽  
Vol 10 (2) ◽  
pp. 33
Author(s):  
Yujuan Liu ◽  
Qianping Zhang ◽  
Bin Zheng ◽  
Jing Zhang ◽  
Zhaozhao Qu

The reservoir in different parts of buried-hill draping zone is often quite different, so it is of great significance to clarify the reservoir characteristics for exploration and development. Based on core, well logging, seismic data and production data, reservoir characteristics of oil layer Ⅱ in the lower second member of Dongying Formation of L oilfield, Bohai Bay Basin, offshore eastern China are systematically studied. Analyses of seismic facies, well-seismic combination, paleogeomorphology, and sedimentary characteristics are carried out. Sediment source supply, lake level and buried hill basement geomorphology all contribute to reservoir quality. The research suggests that the different parts of buried-hill draping zone can be divided into four types. Reservoir thickness and physical properties vary. The area where the provenance direction is consistent with the ancient valley direction is a favorable location for the development of high-quality reservoirs. Under the guidance of the results, oilfield production practices in L oilfield offshore China are successful. Knowledge gained from study of L oilfield has application to the development of other similar fields.


Sign in / Sign up

Export Citation Format

Share Document