scholarly journals Ribosome Profiling Reveals Genome-wide Cellular Translational Regulation upon Heat Stress in Escherichia coli

2017 ◽  
Vol 15 (5) ◽  
pp. 324-330 ◽  
Author(s):  
Yanqing Zhang ◽  
Zhengtao Xiao ◽  
Qin Zou ◽  
Jianhuo Fang ◽  
Qifan Wang ◽  
...  
2019 ◽  
Author(s):  
Sezen Meydan ◽  
James Marks ◽  
Dorota Klepacki ◽  
Virag Sharma ◽  
Pavel V. Baranov ◽  
...  

SUMMARYThe use of alternative translation initiation sites enables production of more than one protein from a single gene, thereby expanding cellular proteome. Although several such examples have been serendipitously found in bacteria, genome-wide mapping of alternative translation start sites has been unattainable. We found that the antibiotic retapamulin specifically arrests initiating ribosomes at start codons of the genes. Retapamulin-enhanced Ribo-seq analysis (Ribo-RET) not only allowed mapping of conventional initiation sites at the beginning of the genes but, strikingly, it also revealed putative internal start sites in a number of Escherichia coli genes. Experiments demonstrated that the internal start codons can be recognized by the ribosomes and direct translation initiation in vitro and in vivo. Proteins, whose synthesis is initiated at an internal in-frame and out-of-frame start sites, can be functionally important and contribute to the ‘alternative’ bacterial proteome. The internal start sites my also play regulatory roles in gene expression.


Sign in / Sign up

Export Citation Format

Share Document