Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India

2019 ◽  
Vol 9 ◽  
pp. 100239 ◽  
Author(s):  
Preetilata Murmu ◽  
Mukesh Kumar ◽  
Deepak Lal ◽  
Irjesh Sonker ◽  
Sudhir Kumar Singh
2020 ◽  
Vol 3 (2) ◽  
pp. 60-71
Author(s):  
Ramachandra M. ◽  
Raghu Babu K. ◽  
Rajasekhar M. ◽  
Pradeep Kumar B.

Present study is carried out for delineation of Groundwater Potential Zones (GWPZ) in Western part of Cuddapah basin, Southern India using Remote Sensing (RS), Geographical Information System (GIS) and Analytical Hierarchy Process (AHP). Various categorized thematic maps: geology, geomorphology (GM), slope, soils, lineament density (LD), drainage density (DD) and gorundwater levels fluctuations (GWLF) were used for mapping and delineation of GWPZs. Suitable and normalized weights were assigned based on AHP to identify GWPZ. The GWPZ map was categorized into five GWPZs types: very poor, poor, moderate, good and very good. About 1.48% (6.05 km2) area is classified in ‘very good’, 25.95% (106.07 km2) in ‘good’, 47.11% (192.53 km2) in ‘moderate’, 22.12% (90.38 km2) in ‘poor’ and 3.34% (13.66 km2) in ‘very poor’ category. The acquired outcomes were validated with water levels fluctuations in pre- and post-monsoon seasons. GIS-based multi-criteria decision making approach is useful for preparation of precise and reliable data. The AHP approach, with the aptitudes of the geospatial data, various data bases can be combined to create conceptual model for identification and estimation of GWPZs.


2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Chaitanya B. Pande ◽  
Kanak N. Moharir ◽  
Balamurugan Panneerselvam ◽  
Sudhir Kumar Singh ◽  
Ahmed Elbeltagi ◽  
...  

AbstractGroundwater plays a vital role in the sustainable development of agriculture, society and economy, and it's demand is increasing due to low rainfall, especially in arid and semiarid regions. In this context, delineation of groundwater potential zones is essential for meeting the demand of different sectors. In this research, the integrated approach consisting of analytical hierarchy process (AHP), multiple influence factors (MIF) and receiver operating characteristics (ROC) was applied. The demarcation of groundwater potential zones is based on thematic maps, namely  Land Use/Land Cover (LULC), Digital Elevation Model (DEM), hillshade, soil texture, slope, groundwater depth, geomorphology, Normalized Difference Vegetation Index (NDVI), and flow direction and accumulation. The pairwise comparison matrix has been created, and weights are assigned to each thematic layer. The comparative score to every factor was calculated from the overall weight of two major and minor influences. Groundwater potential zones were classified into five classes, namely very poor, poor, moderate, good and very good, which cover an area as follows: 3.33 km2, 785.84 km2, 1147.47 km2, 595.82 km2 and 302.65 km2, respectively, based on AHP method. However, the MIF groundwater potential zones map was classified into five classes: very poor, poor, moderate, good and very good areas covered 3.049 km2, 567.42 km2, 1124.50 km2 868.86 km2 and 266.67 km2, respectively. The results of MIF and AHP techniques were validated using receiver operating characteristics (ROC). The result of this research would be helpful to prepare the sustainable groundwater planning map and policy. The proposed framework has admitted to test and could be implemented in different  in various regions around the world to maintain the sustainable practices.


Sign in / Sign up

Export Citation Format

Share Document