Use of solar photovoltaic with active solar still to improve distillate output: A review

2020 ◽  
Vol 10 ◽  
pp. 100341 ◽  
Author(s):  
Kamlesh Pansal ◽  
Bharat Ramani ◽  
Kishor kumar Sadasivuni ◽  
Hitesh Panchal ◽  
Muthu Manokar ◽  
...  
2020 ◽  
Vol 5 (1) ◽  
pp. 46-52
Author(s):  
Nguyen Viet Linh Le ◽  
Tri Hieu Le ◽  
Thi Minh Hao Dong ◽  
Van Vang Le ◽  
Dinh Tung

Recently, due to global warming and urbanization, there are many major cities that may face the challenge of day zero next decades. Obviously, water is an indispensable component for maintaining life on the earth. Although portable water is required of the hour, the quantity of available freshwater is impacted significantly by sea-level rise and pollution from industrialization. As a consequence of the global water crisis, different methods for clean water production from brackish water have been studied and developed in practice, however, the solar distillation of water is the most economical and desirable approach due to this method utilize solar energy that is the environmentally friendly and economical resource. Over the last 15 years, the impressive price drop of the photovoltaic solar collector (PV/T) makes them popular and easy to access. As a result, the employment of PV/T in solar stills is emerging as a potential device for water distillation. Therefore, in this paper, an active solar distiller combined with a photovoltaic panel has been reviewed for improvement of the distillate yield and effectiveness of solar photovoltaic. This review work presents a variety of studies on various types of solar still (for example conventional solar still (CSS), double slope solar still (DSSS), stepped solar distiller, and cascade solar still) couples with different solar water collectors (such as flat plate collector (FPC) and evacuated tubes collector (ETC)) and solar photovoltaic modules. It is obtained that the hybrid PV/T active solar still improves the distillate yield, energy efficiency, and exergy efficiency as compared to passive mode. The cooling method enhances the performance of the photovoltaic solar collector as well as the productivity of solar still. Moreover, the environmental economic estimation reveals that the solar still coupled with the PV/T mitigated considerably the amount of CO2. It can be stated that it is suitable to commercialize the hybrid PV/T active solar still for supplying not only electricity but drinking water also. Finally, this review paper also suggests the scope for the research in the future.


2019 ◽  
Vol 9 ◽  
pp. 100268 ◽  
Author(s):  
Hitesh Panchal ◽  
Kishor Kumar Sadasivuni ◽  
Mohammad Israr ◽  
Nishant Thakar

2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 347-362 ◽  
Author(s):  
Ali Al-Hamadani ◽  
Shailendra Shukla

An experimental investigation on a passive solar still with myristic acid as phase change material (PCM) is carried out to examine the effect of both the mass of PCM and basin water on the daily distillate output and efficiency of the system under indoor simulated condition. Basic energy balance equations are written to predict the water and glass temperatures, daily distillate output and instantaneous efficiency of the single slope solar distillation system with PCM. It is found that the higher mass of PCM with lower mass of water in the solar still basin significantly increases the daily yield and efficiency, but when the amount of PCM exceeds 20 kg productivity reduces. Therefore, a novel and simple of solar stills with PCM is proposed to enhance the overall productivity of the distillation system. The new solar still has increased the distillate output by 35-40%. The use of inner glass cover temperature for productivity prediction has also been investigated, and the prediction shows relatively better agreement with the experimental data.


2015 ◽  
Vol 38 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Hitesh Panchal ◽  
Nikunj Patel ◽  
Hemin Thakkar

Sign in / Sign up

Export Citation Format

Share Document