passive solar still
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 36)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
G N Tiwari ◽  
Md Meraj ◽  
M.E. Khan ◽  
V K Dwevedi

Abstract In this paper, an analytical expression for hourly yield, electrical energy and overall exergy of self-sustained solar still integrated with series and parallel combination of photovoltaic thermal-compound parabolic concentrator (PVT-CPC) collectors have been derived. Based on numerical computations, it has been observed that the yield is maximum for all self-sustained PVT-CPC collectors are connected in series [case (i)]. Further, the daily yield and exergy increase with the increase of water depth unlike passive solar still for all collectors connected in series. However, overall exergy decreases with an increase of water depth for all collectors connected in parallel [case (iv)]. For numerical simulations, the total numbers of self-sustained PVT-CPC collectors has been considered as constant. Further, an effect of series and parallel combination of PVT-CPC collectors on daily yield, electrical energy and overall exergy have also been carried out. Following additional conclusions have also been drawn: (i) The daily yield of the proposed active solar still decreases with the increase of packing factor of semi-transparent PV module for a given water depth and electrical energy and overall exergy increase with water depth for case (i) as expected due to low operating temperature range at higher water depth in the basin. (i) The daily yield, electrical energy and overall exergy increase with the increase of water depth for all combination of series and parallel arrangement of PVT-CPC collectors for a packing factor of 0.22 as per our expectation.


2021 ◽  
Vol 10 (4) ◽  
pp. 789-802
Author(s):  
Tri Hieu Le ◽  
Minh Tuan Pham ◽  
H Hadiyanto ◽  
Van Viet Pham ◽  
Anh Tuan Hoang

Passive solar still is the simplest design for distilling seawater by harnessing solar energy. Although it is undeniable that solar still is a promising device to provide an additional freshwater source for global increasing water demand, low thermal efficiency along with daily distillate yield are its major disadvantages. A conventional solar still can produced 2 to 5 L/m2day. Various studies have been carried out to improve passive solar stills in terms of daily productivity, thermal efficiency, and economic effectiveness. Most of the researches that relate to the daily output improvement of passive solar still concentrates on enhancing evaporation or/and condensation processes. While the condensation process is influenced by wind velocity and characteristics of the condensed surface, the evaporation process is mainly affected by the temperature of basin water. Different parameters affect the brackish water temperature such as solar radiation, design parameters (for example water depth, insulators, basin liner absorptivity, reflectors, sun tracking system, etc). The inclined angle of the top cover is suggested to equal the latitude of the experimental place. Moreover, the decrease of water depth was obtained as a good operational parameter, however, the shallow water depth is required additional feed water for ensuring no dry spot existence. Reflectors and sun-tracking systems help solar still absorb as much solar intensity as possible. The internal reflector can enhance daily yield and efficiency of stepped solar still up to 75% and 56% respectively, whereas, passive solar still with the support of a sun-tracking system improved daily yield up to 22%. Despite large efforts to investigate the impact of the different parameters on passive solar distillation, the effect of the basin liner (including appropriate shapes and type of material), needs to be analyzed for improvement in practical utilization. The present work has reviewed the investigation of the solar still performance with various types of basin liner. The review of solar stills has been conducted critically with rectangular basin, fins basin, corrugated basin, wick type, steps shape, and cylindrical shape basin with variety of top cover shapes. The findings from this work conclude that the basin liner with a cylindrical shape had better performance in comparison with other metal types and provides higher freshwater output. Stepped type, inclined, fin absorber, and corrugated shapes had the efficient performance.  Further exploration revealed that copper is the best-used material for the productivity of passive solar still.


2021 ◽  
Vol 1146 (1) ◽  
pp. 012021
Author(s):  
Suresh Kr. Patel ◽  
Vinay Kr. Singh ◽  
Mahindra Singh ◽  
Deepak Singh ◽  
Dhananjay Singh

Sign in / Sign up

Export Citation Format

Share Document