Complete sequence and structure of the genome of the harmful algal bloom-forming cyanobacterium Planktothrix agardhii NIES-204T and detailed analysis of secondary metabolite gene clusters

Harmful Algae ◽  
2020 ◽  
pp. 101942
Author(s):  
Yohei Shimura ◽  
Takatomo Fujisawa ◽  
Yuu Hirose ◽  
Naomi Misawa ◽  
Yu Kanesaki ◽  
...  
2020 ◽  
Author(s):  
Kat Steinke ◽  
Omkar S. Mohite ◽  
Tilmann Weber ◽  
Ákos T. Kovács

ABSTRACTMicrobes produce a plethora of secondary metabolites that although not essential for primary metabolism benefit them to survive in the environment, communicate, and influence differentiation. Biosynthetic gene clusters (BGCs) responsible for the production of these secondary metabolites are readily identifiable on the genome sequence of bacteria. Understanding the phylogeny and distribution of BGCs helps us to predict natural product synthesis ability of new isolates. Here, we examined the inter- and intraspecies patterns of absence/presence for all BGCs identified with antiSMASH 5.0 in 310 genomes from the B. subtilis group and assigned them to defined gene cluster families (GCFs). This allowed us to establish patterns in distribution for both known and unknown products. Further, we analyzed variations in the BGC structure of particular families encoding for natural products such as plipastatin, fengycin, iturin, mycosubtilin and bacillomycin. Our detailed analysis revealed multiple GCFs that are species or clade specific and few others that are scattered within or between species, which will guide exploration of the chemodiversity within the B. subtilis group. Uniquely, we discovered that partial deletion of BGCs and frameshift mutations in selected biosynthetic genes are conserved within phylogenetically related isolates, although isolated from around the globe. Our results highlight the importance of detailed analysis of BGCs and the remarkable phylogenetically conserved errodation of secondary metabolite biosynthetic potential in the B. subtilis group.IMPORTANCEMembers of the B. subtilis species complex are commonly recognized producers of secondary metabolites, among those the production of antifungals makes them promising biocontrol strains. However, while there are studies examining the distribution of well-known B. subtilis metabolites, this has not yet been systematically reported for the group. Here, we report the complete biosynthetic potential within the Bacillus subtilis group species to explore the distribution of the biosynthetic gene clusters and to provide an exhaustive phylogenetic conservation of secondary metabolite production supporting the chemodiversity of Bacilli. We identify that certain gene clusters acquired deletions of genes and particular frame-shift mutations rendering them inactive for secondary metabolite biosynthesis, a conserved genetic trait within phylogenetically conserved clades of certain species. The overview presented will superbly guide assigning the secondary metabolite production potential of newly isolated strains based on genome sequence and phylogenetic relatedness.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Hooi-Leng Ser ◽  
Wai-Fong Yin ◽  
Kok-Gan Chan ◽  
Nurul-Syakima Ab Mutalib ◽  
Learn-Han Lee

Novosphingobium malaysiense strain MUSC 273T is a recently identified Gram-negative, aerobic alpha-proteobacterium. The strain was isolated from intertidal soil with strong catalase activity. The genome sequence comprises 5,027,021 bp, with 50 tRNA and 3 rRNA genes. Further analysis identified presence of secondary metabolite gene clusters within genome of MUSC 273T. Knowledge of the genomic features of the strain may allow further biotechnological exploitation, particularly for production of secondary metabolites as well as production of industrially important enzymes


Harmful Algae ◽  
2021 ◽  
pp. 101992
Author(s):  
Gustaaf Hallegraeff ◽  
Henrik Enevoldsen ◽  
Adriana Zingone

2021 ◽  
Vol 85 (3) ◽  
pp. 714-721
Author(s):  
Risa Takao ◽  
Katsuyuki Sakai ◽  
Hiroyuki Koshino ◽  
Hiroyuki Osada ◽  
Shunji Takahashi

ABSTRACT Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.


Author(s):  
Eugin Bornman ◽  
Paul D. Cowley ◽  
Janine B. Adams ◽  
Nadine A. Strydom

Sign in / Sign up

Export Citation Format

Share Document