Faculty Opinions recommendation of Spectral integration in primary auditory cortex: laminar processing of afferent input, in vivo and in vitro.

Author(s):  
John Middlebrooks
Neuroscience ◽  
2005 ◽  
Vol 134 (3) ◽  
pp. 1033-1045 ◽  
Author(s):  
S. Kaur ◽  
H.J. Rose ◽  
R. Lazar ◽  
K. Liang ◽  
R. Metherate

2012 ◽  
Vol 107 (5) ◽  
pp. 1476-1488 ◽  
Author(s):  
Max L. Schiff ◽  
Alex D. Reyes

We use a combination of in vitro whole cell recordings and computer simulations to characterize the cellular and synaptic properties that contribute to processing of auditory stimuli. Using a mouse thalamocortical slice preparation, we record the intrinsic membrane properties and synaptic properties of layer 3/4 regular-spiking (RS) pyramidal neurons and fast-spiking (FS) interneurons in primary auditory cortex (AI). We find that postsynaptic potentials (PSPs) evoked in FS cells are significantly larger and depress more than those evoked in RS cells after thalamic stimulation. We use these data to construct a simple computational model of the auditory thalamocortical circuit and find that the differences between FS and RS cells observed in vitro generate model behavior similar to that observed in vivo. We examine how feedforward inhibition and synaptic depression affect cortical responses to time-varying inputs that mimic sinusoidal amplitude-modulated tones. In the model, the balance of cortical inhibition and thalamic excitation evolves in a manner that depends on modulation frequency (MF) of the stimulus and determines cortical response tuning.


2017 ◽  
Vol 28 (5) ◽  
pp. 1610-1624 ◽  
Author(s):  
Dongqin Cai ◽  
Rongrong Han ◽  
Miaomiao Liu ◽  
Fenghua Xie ◽  
Ling You ◽  
...  

Abstract Faithful representation of sound envelopes in primary auditory cortex (A1) is vital for temporal processing and perception of natural sounds. However, the emergence of cortical temporal processing mechanisms during development remains poorly understood. Although cortical inhibition has been proposed to play an important role in this process, direct in-vivo evidence has been lacking. Using loose-patch recordings in rat A1 immediately after hearing onset, we found that stimulus-following ability in fast-spiking neurons was significantly better than in regular-spiking (RS) neurons. In-vivo whole-cell recordings of RS neurons revealed that inhibition in the developing A1 demonstrated much weaker adaptation to repetitive stimuli than in adult A1. Furthermore, inhibitory synaptic inputs were of longer duration than observed in vitro and in adults. Early in development, overlap of the prolonged inhibition evoked by 2 closely following stimuli disrupted the classical temporal sequence between excitation and inhibition, resulting in slower following capacity. During maturation, inhibitory duration gradually shortened accompanied by an improving temporal following ability of RS neurons. Both inhibitory duration and stimulus-following ability demonstrated exposure-based plasticity. These results demonstrate the role of inhibition in setting the pace for experience-dependent maturation of temporal processing in the auditory cortex.


2007 ◽  
Vol 97 (1) ◽  
pp. 670-679 ◽  
Author(s):  
Takahiro Ishikawa ◽  
Takaaki Sato ◽  
Akira Shimizu ◽  
Ken-Ichiro Tsutsui ◽  
Marco de Curtis ◽  
...  

We developed a new technique to isolate a whole guinea pig brain with an intact olfactory epithelium (OE) that enables us to access the ventral surface of the brain including olfactory areas with ease during natural odor stimulation. We applied odorants to OE and confirmed that odor-induced local field potentials (LFPs) could be induced in olfactory areas. In the olfactory bulb (OB) and the piriform cortex (PC), odor-induced LFPs consisted of a phasic initial component followed by a fast activity oscillation in the beta range (20 Hz). To understand the neural mechanisms of odor-induced responses especially in the anterior PC, we analyzed odor-induced LFPs, together with unit activity data. We confirmed that the initial component of odor-induced response has a characteristic temporal pattern, generated by a relatively weak direct afferent input, followed by an intra-cortical associative response, which was associated with a phasic inhibition. The beta oscillation might be formed by the repetition of these network activities. These electrophysiological data were consistent with the results of previous studies that used slice or in vivo preparations, suggesting that the olfactory neural network and activities of the brain are preserved in our new in vitro preparation. This study provides the basis for clarifying the sequence of neural activities underlying odor information processing in the brain in vitro following natural olfactory stimulation.


2009 ◽  
Vol 102 (3) ◽  
pp. 1483-1490 ◽  
Author(s):  
Francois D. Szymanski ◽  
Jose A. Garcia-Lazaro ◽  
Jan W. H. Schnupp

Neurons in primary auditory cortex (A1) are known to exhibit a phenomenon known as stimulus-specific adaptation (SSA), which means that, when tested with pure tones, they will respond more strongly to a particular frequency if it is presented as a rare, unexpected “oddball” stimulus than when the same stimulus forms part of a series of common, “standard” stimuli. Although SSA has occasionally been observed in midbrain neurons that form part of the paraleminscal auditory pathway, it is thought to be weak, rare, or nonexistent among neurons of the leminscal pathway that provide the main afferent input to A1, so that SSA seen in A1 is likely generated within A1 by local mechanisms. To study the contributions that neural processing within the different cytoarchitectonic layers of A1 may make to SSA, we recorded local field potentials in A1 of the rat in response to standard and oddball tones and subjected these to current source density analysis. Although our results show that SSA can be observed throughout all layers of A1, right from the earliest part of the response, there are nevertheless significant differences between layers, with SSA becoming significantly stronger as stimulus-related activity passes from the main thalamorecipient layers III and IV to layer V.


2013 ◽  
Vol 110 (9) ◽  
pp. 2140-2151 ◽  
Author(s):  
Justin D. Yao ◽  
Peter Bremen ◽  
John C. Middlebrooks

The rat is a widely used species for study of the auditory system. Psychophysical results from rats have shown an inability to discriminate sound source locations within a lateral hemifield, despite showing fairly sharp near-midline acuity. We tested the hypothesis that those characteristics of the rat's sound localization psychophysics are evident in the characteristics of spatial sensitivity of its cortical neurons. In addition, we sought quantitative descriptions of in vivo spatial sensitivity of cortical neurons that would support development of an in vitro experimental model to study cortical mechanisms of spatial hearing. We assessed the spatial sensitivity of single- and multiple-neuron responses in the primary auditory cortex (A1) of urethane-anesthetized rats. Free-field noise bursts were varied throughout 360° of azimuth in the horizontal plane at sound levels from 10 to 40 dB above neural thresholds. All neurons encountered in A1 displayed contralateral-hemifield spatial tuning in that they responded strongly to contralateral sound source locations, their responses cut off sharply for locations near the frontal midline, and they showed weak or no responses to ipsilateral sources. Spatial tuning was quite stable across a 30-dB range of sound levels. Consistent with rat psychophysical results, a linear discriminator analysis of spike counts exhibited high spatial acuity for near-midline sounds and poor discrimination for off-midline locations. Hemifield spatial tuning is the most common pattern across all mammals tested previously. The homogeneous population of neurons in rat area A1 will make an excellent system for study of the mechanisms underlying that pattern.


2013 ◽  
Vol 110 (5) ◽  
pp. 1087-1096 ◽  
Author(s):  
Heesoo Kim ◽  
Shaowen Bao

Cortical sensory representation is highly adaptive to the environment, and prevalent or behaviorally important stimuli are often overrepresented. One class of such stimuli is species-specific vocalizations. Rats vocalize in the ultrasonic range >30 kHz, but cortical representation of this frequency range has not been systematically examined. We recorded in vivo cortical electrophysiological responses to ultrasonic pure-tone pips, natural ultrasonic vocalizations, and pitch-shifted vocalizations to assess how rats represent this ethologically relevant frequency range. We find that nearly 40% of the primary auditory cortex (AI) represents an octave-wide band of ultrasonic vocalization frequencies (UVFs; 32–64 kHz) compared with <20% for other octave bands <32 kHz. These UVF neurons respond preferentially and reliably to ultrasonic vocalizations. The UVF overrepresentation matures in the cortex before it develops in the central nucleus of inferior colliculus, suggesting a cortical origin and corticofugal influences. Furthermore, the development of cortical UVF overrepresentation depends on early acoustic experience. These results indicate that natural sensory experience causes large-scale cortical map reorganization and improves representations of species-specific vocalizations.


Sign in / Sign up

Export Citation Format

Share Document