scholarly journals Functional segregation of monaural and binaural selectivity in the pallid bat auditory cortex

2016 ◽  
Vol 337 ◽  
pp. 35-45 ◽  
Author(s):  
Khaleel A. Razak
Keyword(s):  
2018 ◽  
Vol 367 ◽  
pp. 137-148 ◽  
Author(s):  
Kevin Measor ◽  
Stuart Yarrow ◽  
Khaleel A. Razak

2010 ◽  
Vol 104 (1) ◽  
pp. 517-528 ◽  
Author(s):  
Khaleel A. Razak ◽  
Zoltan M. Fuzessery

A consistent organizational feature of auditory cortex is a clustered representation of binaural properties. Here we address two questions. What is the intrinsic organization of binaural clusters and to what extent does intracortical processing contribute to binaural representation. We address these issues in the auditory cortex of the pallid bat. The pallid bat listens to prey-generated noise transients to localize and hunt terrestrial prey. As in other species studied, binaural clusters are present in the auditory cortex of the pallid bat. One cluster contains neurons that require binaural stimulation to be maximally excited, and are commonly termed predominantly binaural (PB) neurons. These neurons do not respond to monaural stimulation of either ear but show a peaked sensitivity to interaural intensity differences (IID) centered near 0 dB IID. We show that the peak IID varies systematically within this cluster. The peak IID is also correlated with the best frequency (BF) of neurons within this cluster. In addition, the IID selectivity of PB neurons is shaped by intracortical GABAergic input. Iontophoresis of GABAA receptor antagonists on PB neurons converts a majority of them to binaurally inhibited (EI) neurons that respond best to sounds favoring the contralateral ear. These data indicate that the cortex does not simply inherit binaural properties from lower levels but instead sharpens them locally through intracortical inhibition. The IID selectivity of the PB cluster indicates that the pallid bat cortex contains an increased representation of the frontal space that may underlie increased localization accuracy in this region.


2009 ◽  
Vol 102 (3) ◽  
pp. 1366-1378 ◽  
Author(s):  
Khaleel A. Razak ◽  
Zoltan M. Fuzessery

In the pallid bat auditory cortex and inferior colliculus (IC), the majority of neurons tuned in the echolocation range is selective for the direction and rate of frequency-modulated (FM) sweeps used in echolocation. Such selectivity is shaped mainly by spectrotemporal asymmetries in sideband inhibition. An early-arriving, low-frequency inhibition (LFI) shapes direction selectivity. A delayed, high-frequency inhibition (HFI) shapes rate selectivity for downward sweeps. Using iontophoretic blockade of GABAa receptors, we show that cortical FM sweep selectivity is at least partially shaped locally. GABAa receptor antagonists, bicuculline or gabazine, reduced or eliminated direction and rate selectivity in ∼50% of neurons. Intracortical GABA shapes FM sweep selectivity by either creating the underlying sideband inhibition or by advancing the arrival time of inhibition relative to excitation. Given that FM sweep selectivity and asymmetries in sideband inhibition are already present in the IC, these data suggest a refinement or recreation of similar response properties at the cortical level.


2002 ◽  
Vol 87 (1) ◽  
pp. 72-86 ◽  
Author(s):  
Khaleel A. Razak ◽  
Zoltan M. Fuzessery

This report maps the organization of the primary auditory cortex of the pallid bat in terms of frequency tuning, selectivity for behaviorally relevant sounds, and interaural intensity difference (IID) sensitivity. The pallid bat is unusual in that it localizes terrestrial prey by passively listening to prey-generated noise transients (1–20 kHz), while reserving high-frequency (<30 kHz) echolocation for obstacle avoidance. The functional organization of its auditory cortex reflects the need for specializations in echolocation and passive sound localization. Best frequencies were arranged tonotopically with a general increase in the caudolateral to rostromedial direction. Frequencies between 24 and 32 kHz were under-represented, resulting in hypertrophy of frequencies relevant for prey localization and echolocation. Most neurons (83%) tuned <30 kHz responded preferentially to broadband or band-pass noise over single tones. Most neurons (62%) tuned >30 kHz responded selectively or exclusively to the 60- to 30-kHz downward frequency-modulated (FM) sweep used for echolocation. Within the low-frequency region, neurons were placed in two groups that occurred in two separate clusters: those selective for low- or high-frequency band-pass noise and suppressed by broadband noise, and neurons that showed no preference for band-pass noise over broadband noise. Neurons were organized in homogeneous clusters with respect to their binaural response properties. The distribution of binaural properties differed in the noise- and FM sweep-preferring regions, suggesting task-dependent differences in binaural processing. The low-frequency region was dominated by a large cluster of binaurally inhibited neurons with a smaller cluster of neurons with mixed binaural interactions. The FM sweep-selective region was dominated by neurons with mixed binaural interactions or monaural neurons. Finally, this report describes a cortical substrate for systematic representation of a spatial cue, IIDs, in the low-frequency region. This substrate may underlie a population code for sound localization based on a systematic shift in the distribution of activity across the cortex with sound source location.


2007 ◽  
Vol 228 (1-2) ◽  
pp. 69-81 ◽  
Author(s):  
Khaleel A. Razak ◽  
Zoltan M. Fuzessery

2006 ◽  
Vol 96 (3) ◽  
pp. 1303-1319 ◽  
Author(s):  
Khaleel A. Razak ◽  
Zoltan M. Fuzessery

Frequency-modulated (FM) sweeps are common in vocalizations, including human speech. Selectivity for FM sweep rate and direction is present in the auditory cortex of many species. The present study sought to determine the mechanisms underlying FM sweep selectivity in the auditory cortex of pallid bats. In the pallid bat inferior colliculus (IC), two mechanisms underlie selectivity for FM sweep rate. The first mechanism depends on duration tuning for tones that arises as a consequence of early inhibition generated by an excitatory tone. The second mechanism depends on a narrow band of delayed high-frequency inhibition. Direction selectivity depends on a broad band of early low-frequency inhibition. Here, the contributions of these mechanisms to cortical FM sweep selectivity were determined in pentobarbital-anesthetized pallid bats. We show that the majority of cortical neurons tuned to echolocation frequencies are selective for the downward direction and rate of FM sweeps. Unlike in IC neurons tuned in the echolocation range, duration tuning is rare in cortical neurons with similar tuning. As in the IC, consistent spectrotemporal differences exist between low- and high-frequency sidebands. A narrow band of delayed high-frequency inhibition is necessary for FM rate selectivity. Low-frequency inhibition has a broad bandwidth, early arrival time, and creates direction selectivity. Cortical neurons respond better to slower FM rates and exhibit broader rate tuning than IC neurons. Relative arrival time of high-frequency inhibition is slower in the cortex than in the IC. Thus whereas similar mechanisms shape direction selectivity of neurons tuned in the echolocation range in the IC and the cortex, only one of the two mechanisms underlying rate selectivity in the IC is present in the cortex.


Neuroreport ◽  
2000 ◽  
Vol 11 (13) ◽  
pp. 2919-2924 ◽  
Author(s):  
Khaleel A. Razak ◽  
Zoltan M. Fuzessery
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document