sweep rate
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 47)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 16 (6) ◽  
Author(s):  
Shantanu Kumar Panda ◽  
Subhadeep Datta ◽  
Shampa Guha ◽  
Jyotirekha Mallick ◽  
Manoranjan Kar

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7490
Author(s):  
Alexander Poznyak ◽  
Andrei Pligovka ◽  
Marco Salerno

Magnetron-sputtered thin films of titanium and zirconium, with a thickness of 150 nm, were hydrogenated at atmospheric pressure and a temperature of 703 K, then anodized in boric, oxalic, and tartaric acid aqueous solutions, in potentiostatic, galvanostatic, potentiodynamic, and combined modes. A study of the thickness distribution of the elements in fully anodized hydrogenated zirconium samples, using Auger electron spectroscopy, indicates the formation of zirconia. The voltage- and current-time responses of hydrogenated titanium anodizing were investigated. In this work, fundamental possibility and some process features of anodizing hydrogenated metals were demonstrated. In the case of potentiodynamic anodizing at 0.6 M tartaric acid, the increase in titanium hydrogenation time, from 30 to 90 min, leads to a decrease in the charge of the oxidizing hydrogenated metal at an anodic voltage sweep rate of 0.2 V·s−1. An anodic voltage sweep rate in the range of 0.05–0.5 V·s−1, with a hydrogenation time of 60 min, increases the anodizing efficiency (charge reduction for the complete oxidation of the hydrogenated metal). The detected radical differences in the time responses and decreased efficiency of the anodic process during the anodizing of the hydrogenated thin films, compared to pure metals, are explained by the presence of hydrogen in the composition of the samples and the increased contribution of side processes, due to the possible features of the formed oxide morphologies.


2021 ◽  
Vol 15 (1) ◽  
pp. 31-40
Author(s):  
Shankar A. Itagi ◽  
Jamballi G. G. Manjunatha ◽  
Madikeri M. Charithra ◽  
Puttaswamappa Mallu ◽  
Shadakshari Sandeep ◽  
...  

Introduction: The voltammetric sensing of Acetaminophen (AN) using modified Dysprosium Copper Oxide (DyCuO) Nanoparticles (NP) mixed Carbon Paste Electrode (MCPE) was successfully developed. Methods: The modification of bare NPMCPE was achieved by the polymerisation of DL-Phenylalanine (DLPA). The electroanalysis of the AN was achieved by utilizing the Cyclic voltammetry (CV) approaches. The crystallographic nature of the nanoparticle was studied via X-ray Powder Diffraction (XRD) technique. The surface morphology and electrochemical feature of the prepared electrode were evaluated by Field Emission Scanning Electron Microscopy (FE-SEM) and Electrochemical Impedance Spectroscopy (EIS) techniques. Results: The modified sensor exhibited an excellent electrocatalytic activity towards the electroanalysis of the AN. Several aspects, such as the number of polymerisation cycles, variation of pH, and the impact of scan rate were investigated in 0.2 M supporting electrolyte (pH 7) at a sweep rate of 0.1 Vs-1. The suggested sensor shows a very low detection limit (11.95×10-8 M) with a linear range of 2.0 to 50.0 µM, which exhibits excellent sensitivity. Conclusion: The stable and reusable sensor was applied for the estimation of AN in the tablet sample. Thus, P(DLPA)MNPMCPE was utilized as the most capable sensor for the voltammetric detection of AN.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mingxuan Guo ◽  
Haibo Li

In this work, Mil-88B(Fe) is modified by a facile hydrolysis method for high-performance lithium ion battery (LIB). The hydrolyzed Mil-88B(Fe) [H-Mil-88B(Fe)] heritages the spindle-like shape of Mil-88B(Fe) and forms a porous structure, which possesses relatively high specific surface area (427.86 m2 g−1). It is 15 times higher than that of pristine Mil-88B(Fe). As anode for LIB, it reaches to high specific capacity of 600.1 mAh g−1 after 100 cycles at 100 mA g−1, while it is 312.5 mAh g−1 for pure Mil-88B(Fe). Furthermore, the kinetic analysis on i=avb reveals that the b value of H-Mil-88B(Fe) is 0.888, which suggests the mixed contribution from the diffusion and capacity reactions. Furthermore, the capacitance contribution fractions of H-Mil-88B(Fe) are 47.6%, 53.28%, 56.88%, 74.68%, and 69.14% at the sweep rate of 0.2, 0.4, 0.6, 0.8, 1.0 mV s−1, respectively, demonstrating a capacitance-dominated charge storage process at fast charging rates.


2021 ◽  
Author(s):  
Fritz Simeon ◽  
Michael C. Stern ◽  
Kyle M. Diederichsen ◽  
Yayuan Liu ◽  
Howard J. Herzog ◽  
...  

The complexation and decomplexation of CO2 with a series of quinones of different basicity during electrochemical cycling in dimethylformamide solutions were studied systematically by cyclic voltammetry. In the absence of CO2, all quinones exhibited two well-separated reduction waves. For weakly complexing quinones, a positive shift in the second reduction wave was observed in the presence of CO2, corresponding to the dianion quinone-CO2 complex formation. The peak position and peak height of the first re-duction wave were unchanged, indicating no formation of complexes between the semiquinones and CO2. The relative heights of both reduction waves remained constant. In the case of strongly complexing quinones, the second reduction wave disappeared while the peak height of the first reduction wave approximately doubled, indicating that the two electrons transferred simultaneously at this potential. The observed voltammograms were rationalized through several equilibrium arguments. Both weakly and strongly complexing quinones underwent either stepwise or concerted mechanisms of oxidation and CO2 dissociation depending on the sweep rate in the cyclic voltammetric experiments. Relative to stepwise oxidation, the concerted process requires a more positive electrode potential to remove the electron from the carbonate complexes to release CO2 and regenerate the quinone. For weakly complexing quinones, the stepwise process corresponds to oxidation of the uncomplexed dianion and accompanying equilibrium shift, while for strongly complexing quinones the stepwise process would correspond to the oxidation of mono(carbonate) dianion to the complexed semiquinone and accompanying equilibrium shift. This study provides a mechanistic interpretation of the interactions that lead to the formation of quinone-CO2 complexes required for the potential development of an energy efficient electrochemical separation process and discusses important considerations for practical implementation of CO2 capture in the presence of oxygen with lower vapor pressure solvents.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4859
Author(s):  
Muaffaq M. Nofal ◽  
Jihad M. Hadi ◽  
Shujahadeen B. Aziz ◽  
Mohamad A. Brza ◽  
Ahmad S. F. M. Asnawi ◽  
...  

In this research, a biopolymer-based electrolyte system involving methylcellulose (MC) as a host polymeric material and potassium iodide (KI) salt as the ionic source was prepared by solution cast technique. The electrolyte with the highest conductivity was used for device application of electrochemical double-layer capacitor (EDLC) with high specific capacitance. The electrical, structural, and electrochemical characteristics of the electrolyte systems were investigated using various techniques. According to electrochemical impedance spectroscopy (EIS), the bulk resistance (Rb) decreased from 3.3 × 105 to 8 × 102 Ω with the increase of salt concentration from 10 wt % to 40 wt % and the ionic conductivity was found to be 1.93 ×10−5 S/cm. The dielectric analysis further verified the conductivity trends. Low-frequency regions showed high dielectric constant, ε′ and loss, ε″ values. The polymer-salt complexation between (MC) and (KI) was shown through a Fourier transformed infrared spectroscopy (FTIR) studies. The analysis of transference number measurement (TNM) supported ions were predominantly responsible for the transport process in the MC-KI electrolyte. The highest conducting sample was observed to be electrochemically constant as the potential was swept linearly up to 1.8 V using linear sweep voltammetry (LSV). The cyclic voltammetry (CV) profile reveals the absence of a redox peak, indicating the presence of a charge double-layer between the surface of activated carbon electrodes and electrolytes. The maximum specific capacitance, Cs value was obtained as 118.4 F/g at the sweep rate of 10 mV/s.


Author(s):  
Z. R. Obidov ◽  
P. R. Ibrohimov ◽  
F. A. Rahimov ◽  
I. N. Ganiev

The paper presents the results of a potentiodynamic study of the anodic behaviour of Zn0.5Al doped with molybdenum in the acidic (0.1 M, pH = 1; 0.01 M, pH = 2; 0.001 M, pH = 3), neutral (0.03, 0.3, 3%, pH = 7) and alkaline (0.001 M, pH = 10; 0.01 M, pH = 11; 0.1 M, pH = 12) media of HCl, NaCl and NaOH electrolytes. In the potentiodynamic mode with an electrode potential sweep rate of 2 mV/s, all Zn0.5Al-Mo samples containing from 0.01 to 1.0 wt% of molybdenum demonstrated a shift in the potentials of corrosion, pitting formation and repassivation. These potentials shift towards negative values in acidic and alkaline media, while shifting to positive values in a neutral medium. It was established that an increase in the concentration of electrolytes led to a shift of all the considered potentials towards negative values in all media - acidic, neutral and alkaline. This dependence is associated with the specific features of the process of anodic dissolution of alloys during the formation of an oxide film on their surface. The significance of the dependence of the stationary potential of free corrosion of alloys on time for establishing the passivity of surfaces in acidic, neutral and alkaline media was shown. It was determined that zinc alloys doped with molybdenum are resistant to pitting corrosion in all the investigated media. This resistivity is particularly high in acidic (0.001 M), neutral (0.03%) and alkaline (0.001 M) media of HCl, NaCl and NaOH electrolytes. The favourable effect of molybdenum on both the anodic behaviour of Zn0.5Al and the overall increase in the corrosion resistance of alloys was demonstrated. In comparison with undoped Zn0.5Al alloys, the corrosion rate of alloys doped with molybdenum (0.01-1.0 wt%) is 2-2.5 times lower. The proposed compositions of Zn0.5Al-Mo alloys can be used as noncorrosive coatings for steel products.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1233
Author(s):  
M. H. Hamsan ◽  
Muaffaq M. Nofal ◽  
Shujahadeen B. Aziz ◽  
M. A. Brza ◽  
Elham M. A. Dannoun ◽  
...  

Chitosan (CS)-dextran (DN) biopolymer electrolytes doped with ammonium iodide (NH4I) and plasticized with glycerol (GL), then dispersed with Zn(II)-metal complex were fabricated for energy device application. The CS:DN:NH4I:Zn(II)-complex was plasticized with various amounts of GL and the impact of used metal complex and GL on the properties of the formed electrolyte were investigated.The electrochemical impedance spectroscopy (EIS) measurements have shown that the highest conductivity for the plasticized system was 3.44 × 10−4 S/cm. From the x-ray diffraction (XRD) measurements, the plasticized electrolyte with minimum degree of crystallinity has shown the maximum conductivity. The effect of (GL) plasticizer on the film morphology was studied using FESEM. It has been confirmed via transference number analysis (TNM) that the transport mechanism in the prepared electrolyte is predominantly ionic in nature with a high transference number of ion (ti)of 0.983. From a linear sweep voltammetry (LSV) study, the electrolyte was found to be electrochemically constant as the voltage sweeps linearly up to 1.25 V. The cyclic voltammetry (CV) curve covered most of the area of the current–potential plot with no redox peaks and the sweep rate was found to be affecting the capacitance. The electric double-layer capacitor (EDLC) has shown a great performance of specific capacitance (108.3 F/g), ESR(47.8 ohm), energy density (12.2 W/kg) and power density (1743.4 W/kg) for complete 100 cycles at a current density of 0.5 mA cm−2.


2021 ◽  
Vol 68 (1) ◽  
pp. 185-192
Author(s):  
Vusala Asim Majidzade ◽  
Akif Shikhan Aliyev ◽  
Mahmoud Elrouby ◽  
Dunya Mahammad Babanly ◽  
Dilgam Babir Tagiyev

The electrochemical reduction of iron (III) ions into zero-valent iron from a solution of ethylene glycol was accomplished. The kinetics and mechanism of the electroreduction process were investigated by cyclic and linear polarization techniques. The influence of temperature, potential sweep rate, and concentration of iron (III) ions on the electroreduction process was also studied. The observed values of effective activation energy revealed that the investigated electroreduction process is accompanied by mixed kinetics control. Moreover, the results of SEM and X-ray diffraction analysis confirmed the deposition of thin Fe films under the optimized conditions.


Sign in / Sign up

Export Citation Format

Share Document