Nelson's notch in the rate-level functions of auditory-nerve fibers might be caused by PIEZO2-mediated reverse-polarity currents in hair cells

2019 ◽  
Vol 381 ◽  
pp. 107783
Author(s):  
Peter Heil ◽  
Adam J. Peterson
Author(s):  
Dalian Ding ◽  
Haiyan Jiang ◽  
Senthilvelan Manohar ◽  
Xiaopeng Liu ◽  
Li Li ◽  
...  

2-Hyroxypropyl-beta-cyclodextrin (HPβCD) is being used to treat Niemann-Pick C1, a fatal neurodegenerative disease caused by abnormal cholesterol metabolism. HPβCD slows disease progression, but unfortunately causes severe, rapid onset hearing loss by destroying the outer hair cells (OHC). HPβCD-induced damage is believed to be related to the expression of prestin in OHCs. Because prestin is postnatally upregulated from the cochlear base toward the apex, we hypothesized that HPβCD ototoxicity would spread from the high-frequency base toward the low-frequency apex of the cochlea. Consistent with this hypothesis, cochlear hearing impairments and OHC loss rapidly spread from the high-frequency base toward the low-frequency apex of the cochlea when HPβCD administration shifted from postnatal day 3 (P3) to P28. HPβCD-induced histopathologies were initially confined to the OHCs, but between 4- and 6-weeks post-treatment, there was an unexpected, rapid and massive expansion of the lesion to include most inner hair cells (IHC), pillar cells (PC), peripheral auditory nerve fibers, and spiral ganglion neurons at location where OHCs were missing. The magnitude and spatial extent of HPβCD-induced OHC death was tightly correlated with the postnatal day when HPβCD was administered which coincided with the spatiotemporal upregulation of prestin in OHCs. A second, massive wave of degeneration involving IHCs, PC, auditory nerve fibers and spiral ganglion neurons abruptly emerged 4–6 weeks post-HPβCD treatment. This secondary wave of degeneration combined with the initial OHC loss results in a profound, irreversible hearing loss.


1991 ◽  
Vol 53 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Lisa I. Hellstrom ◽  
Richard A. Schmiedt

1991 ◽  
Vol 113 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Sir James Lighthill

This survey lecture on the biomechanics of hearing sensitivity is concerned, not with how the brain in man and other mammals analyzes the data coming to it along auditory nerve fibers, but with the initial capture of that data in the cochlea. The brain, needless to say, can produce all its miracles of interpretation only where it works on good initial data. For frequency selectivity these depend on some remarkable properties of the cochlea as a passive macromechanical system, comprising the basilar membrane with its steeply graded stiffness distribution vibrating within the cochlear fluids. But the biomechanics of hearing sensitivity to low levels of sound (at any particular frequency) calls also into play an active micromechanical system, which during the past few years has progressively been identified as located in the outer hair cells, and which, through a process of positive feedback, amplifies (in healthy ears) that basilar membrane vibration. This in turn offers the inner hair cells an enhanced signal at low sound levels, so that the threshold at which they can generate activity in auditory nerve fibers is, in consequence, very substantially lowered.


2011 ◽  
Vol 31 (43) ◽  
pp. 15424-15437 ◽  
Author(s):  
P. Heil ◽  
H. Neubauer ◽  
D. R. F. Irvine

1989 ◽  
Vol 41 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Murray B. Sachs ◽  
Raimond L. Winslow ◽  
Bernd H.A. Sokolowski

Sign in / Sign up

Export Citation Format

Share Document