scholarly journals Immunohistochemical location of Na+, K+-ATPase α1 subunit in the human inner ear

2021 ◽  
Vol 400 ◽  
pp. 108113
Author(s):  
Ryan Stephenson ◽  
Astkhik Mangasarian ◽  
Gail Ishiyama ◽  
Kumiko Hosokawa ◽  
Seiji Hosokawa ◽  
...  
2020 ◽  
Vol 53 (2) ◽  
pp. 16424-16429
Author(s):  
Milka C.I. Madahana ◽  
Otis T.C. Nyandoro ◽  
John E.D. Ekoru

1979 ◽  
Vol 88 (3) ◽  
pp. 424-426 ◽  
Author(s):  
Larry E. Davis ◽  
Charles G. James ◽  
Frederick Fiber ◽  
Leroy C. McLaren

Cytomegalovirus (CMV) infection of the fetus has been associated with congenital deafness or hearing loss. This association has previously been based on clinical or pathological studies. We report an infant who died with the congenital CMV syndrome in which CMV was isolated from the perilymph of the inner ear providing additional evidence that this virus can infect the labyrinth.


2021 ◽  
Author(s):  
Daniel R. Romano ◽  
Eri Hashino ◽  
Rick F. Nelson

AbstractSensorineural hearing loss (SNHL) is a major cause of functional disability in both the developed and developing world. While hearing aids and cochlear implants provide significant benefit to many with SNHL, neither targets the cellular and molecular dysfunction that ultimately underlies SNHL. The successful development of more targeted approaches, such as growth factor, stem cell, and gene therapies, will require a yet deeper understanding of the underlying molecular mechanisms of human hearing and deafness. Unfortunately, the human inner ear cannot be biopsied without causing significant, irreversible damage to the hearing or balance organ. Thus, much of our current understanding of the cellular and molecular biology of human deafness, and of the human auditory system more broadly, has been inferred from observational and experimental studies in animal models, each of which has its own advantages and limitations. In 2013, researchers described a protocol for the generation of inner ear organoids from pluripotent stem cells (PSCs), which could serve as scalable, high-fidelity alternatives to animal models. Here, we discuss the advantages and limitations of conventional models of the human auditory system, describe the generation and characteristics of PSC-derived inner ear organoids, and discuss several strategies and recent attempts to model hereditary deafness in vitro. Finally, we suggest and discuss several focus areas for the further, intensive characterization of inner ear organoids and discuss the translational applications of these novel models of the human inner ear.


2018 ◽  
Vol 129 (8) ◽  
pp. e112-e113
Author(s):  
F. Nejatbakhshesfahani ◽  
V. Kirsch ◽  
A. Berman ◽  
D. Keeser ◽  
A. Ahmadi ◽  
...  

2012 ◽  
Vol 7 (5) ◽  
pp. 663-673 ◽  
Author(s):  
Zhengqing Hu ◽  
Xuemei Luo ◽  
Lei Zhang ◽  
Fengqing Lu ◽  
Fengping Dong ◽  
...  

2021 ◽  
Author(s):  
Jing Nie ◽  
Yoshitomo Ueda ◽  
Alexander Solivais ◽  
Eri Hashino

Abstract Mutations in the chromatin remodeling enzyme CHD7 cause CHARGE syndrome, which affects multiple organs including the inner ear. We investigated how CHD7 mutations affect otic development in human inner ear organoids. We found loss of CHD7 or its chromatin remodeling activity leads to complete absence of hair cells and supporting cells, which can be explained by dysregulation of key otic development-associated genes in mutant otic progenitors. Further analysis of the mutant otic progenitors suggested that CHD7 can regulate otic genes through a chromatin remodeling-independent mechanism. Results from transcriptome profiling of hair cells revealed disruption of deafness gene expression as a potential underlying mechanism of CHARGE-associated sensorineural hearing loss. Notably, co-differentiating CHD7 knockout and wild-type cells in chimeric organoids partially rescued mutant phenotypes by restoring otherwise severely dysregulated otic genes. Taken together, our results suggest that CHD7 plays a critical role in regulating human otic lineage differentiation and deafness gene expression.


Sign in / Sign up

Export Citation Format

Share Document