scholarly journals A new multistage technique for approximate analytical solution of nonlinear differential equations

Heliyon ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. e05188
Author(s):  
Saheed Ojo Akindeinde
2018 ◽  
Vol 30 (5) ◽  
pp. 928-944 ◽  
Author(s):  
A. T. MEIMARIS ◽  
I. A. KOUGIOUMTZOGLOU ◽  
A. A. PANTELOUS

An approximate analytical solution is derived for a certain class of stochastic differential equations with constant diffusion, but nonlinear drift coefficients. Specifically, a closed form expression is derived for the response process transition probability density function (PDF) based on the concept of the Wiener path integral and on a Cauchy–Schwarz inequality treatment. This is done in conjunction with formulating and solving an error minimisation problem by relying on the associated Fokker–Planck equation operator. The developed technique, which requires minimal computational cost for the determination of the response process PDF, exhibits satisfactory accuracy and is capable of capturing the salient features of the PDF as demonstrated by comparisons with pertinent Monte Carlo simulation data. In addition to the mathematical merit of the approximate analytical solution, the derived PDF can be used also as a benchmark for assessing the accuracy of alternative, more computationally demanding, numerical solution techniques. Several examples are provided for assessing the reliability of the proposed approximation.


Author(s):  
Dr. K.V.Tamil Selvi , Et. al.

In this paper, analysis of nonlinear partial differential equations on velocities and temperature with convective boundary conditions are investigated. The governing partial differential equations are transformed into ordinary differential equations by applying similarity transformations. The system of nonlinear differential equations are solved using Homotopy Analysis Method (HAM). An analytical solution is obtained for the values of Magnetic parameter M2, Prandtl number Pr, Porosity parameter


Author(s):  
Виктор Николаевич Орлов ◽  
Людмила Витальевна Мустафина

В работе приводится доказательство теоремы существования и единственности аналитического решения класса нелинейных дифференциальных уравнений третьего порядка, правая часть которого представлена полиномом шестой степени, в комплексной области. Расширен класс рассматриваемых уравнений за счет новой замены переменных. Получена априорная оценка аналитического приближенного решения. Представлен вариант численного эксперимента оптимизации априорных оценок с помощью апостериорных. The article presents a proof of the theorem of the existence and uniqueness of the analytical solution of the class of nonlinear differential equations of the third order, with a polynomial right-hand side of the sixth degree, in the complex domain. The class of the considered equations has been extended by means of a new change of variables. An a priori estimate of the analytical approximate solution is obtained. A variant of the numerical experiment of optimizing a priori estimates using a posteriori estimates is presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sajad Iqbal ◽  
Mohammed K. A. Kaabar ◽  
Francisco Martínez

In this article, the approximate analytical solutions of four different types of conformable partial differential equations are investigated. First, the conformable Laplace transform homotopy perturbation method is reformulated. Then, the approximate analytical solution of four types of conformable partial differential equations is presented via the proposed technique. To check the accuracy of the proposed technique, the numerical and exact solutions are compared with each other. From this comparison, we conclude that the proposed technique is very efficient and easy to apply to various types of conformable partial differential equations.


Author(s):  
Zhenisgul Rakhmetullina ◽  
Indira Uvaliyeva ◽  
Farida Amenova

This paper presents an analytical solution of the differential equations of motion of a material point in the plane perpendicular to the plane of the gravitating disk. The differential equations of the problem under study and the applied Gilden's method are described in the works of A. Poincaré. Differential equations refer to nonlinear equations. The analysis of methods for solving nonlinear differential equations was carried out. The methodology of applying the Gilden method to the solution of the differential equations under consideration can be applied in studies of the problem of the motion of celestial bodies in the “disk-material point” system in perpendicular planes. To identify the various properties of the gravitating disk, an analytical review of the state of the problem of the motion of a material point in the field of a gravitating disk is carried out. Summing up the presented review on the problem under study, a conclusion is made. The substantive formulation of the problem is described, which is formulated as follows: the study of the influence of disk-shaped bodies on the motion of a material point and methods for their solution.


Author(s):  
Gamal Mohamed Ismail ◽  
Mahmoud Abul-Ez ◽  
Mohra Zayed ◽  
Hijaz Ahmad ◽  
Maha El-Moshneb

Based on the suggested parameter, a new analytical perturbation technique is presented to obtain highly ordered accurate analytical solutions for nonlinear Duffing oscillator with nonlinearity of high order. Comparing the obtained results with the numerical and other previously published results reveals the usefulness and correctness of the present technique. It is shown that the results are valid for small and large amplitudes. Indeed, it is found that our proposed technique produces more accurate and computationally results than the rival known methods. The obtained results show the efficiency and capability of the present perturbation technique to be applied to various strongly nonlinear differential equations.


Sign in / Sign up

Export Citation Format

Share Document