scholarly journals A Banana PHD-Type Transcription Factor MaPHD1 Represses a Cell Wall-Degradation Gene MaXTH6 during Fruit Ripening

2017 ◽  
Vol 3 (5) ◽  
pp. 190-198 ◽  
Author(s):  
Wei WEI ◽  
Zhongqi FAN ◽  
Jianye CHEN ◽  
Jianfei KUANG ◽  
Wangjin LU ◽  
...  
2020 ◽  
Vol 117 (21) ◽  
pp. 11692-11702 ◽  
Author(s):  
Jung-Ho Shin ◽  
Alan G. Sulpizio ◽  
Aaron Kelley ◽  
Laura Alvarez ◽  
Shannon G. Murphy ◽  
...  

Most bacteria surround themselves with a cell wall, a strong meshwork consisting primarily of the polymerized aminosugar peptidoglycan (PG). PG is essential for structural maintenance of bacterial cells, and thus for viability. PG is also constantly synthesized and turned over; the latter process is mediated by PG cleavage enzymes, for example, the endopeptidases (EPs). EPs themselves are essential for growth but also promote lethal cell wall degradation after exposure to antibiotics that inhibit PG synthases (e.g., β-lactams). Thus, EPs are attractive targets for novel antibiotics and their adjuvants. However, we have a poor understanding of how these enzymes are regulated in vivo, depriving us of novel pathways for the development of such antibiotics. Here, we have solved crystal structures of the LysM/M23 family peptidase ShyA, the primary EP of the cholera pathogenVibrio cholerae. Our data suggest that ShyA assumes two drastically different conformations: a more open form that allows for substrate binding and a closed form, which we predicted to be catalytically inactive. Mutations expected to promote the open conformation caused enhanced activity in vitro and in vivo, and these results were recapitulated in EPs from the divergent pathogensNeisseria gonorrheaeandEscherichia coli. Our results suggest that LysM/M23 EPs are regulated via release of the inhibitory Domain 1 from the M23 active site, likely through conformational rearrangement in vivo.


2010 ◽  
Vol 54 (4) ◽  
pp. 1639-1643 ◽  
Author(s):  
Taiga Miyazaki ◽  
Shunsuke Yamauchi ◽  
Tatsuo Inamine ◽  
Yosuke Nagayoshi ◽  
Tomomi Saijo ◽  
...  

ABSTRACT A Candida glabrata calcineurin mutant exhibited increased susceptibility to both azole antifungal and cell wall-damaging agents and was also attenuated in virulence. Although a mutant lacking the downstream transcription factor Crz1 displayed a cell wall-associated phenotype intermediate to that of the calcineurin mutant and was modestly attenuated in virulence, it did not show increased azole susceptibility. These results suggest that calcineurin regulates both Crz1-dependent and -independent pathways depending on the type of stress.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Darcy A. B. Jones ◽  
Evan John ◽  
Kasia Rybak ◽  
Huyen T. T. Phan ◽  
Karam B. Singh ◽  
...  

Abstract The fungus Parastagonospora nodorum infects wheat through the use of necrotrophic effector (NE) proteins that cause host-specific tissue necrosis. The Zn2Cys6 transcription factor PnPf2 positively regulates NE gene expression and is required for virulence on wheat. Little is known about other downstream targets of PnPf2. We compared the transcriptomes of the P. nodorum wildtype and a strain deleted in PnPf2 (pf2-69) during in vitro growth and host infection to further elucidate targets of PnPf2 signalling. Gene ontology enrichment analysis of the differentially expressed (DE) genes revealed that genes associated with plant cell wall degradation and proteolysis were enriched in down-regulated DE gene sets in pf2-69 compared to SN15. In contrast, genes associated with redox control, nutrient and ion transport were up-regulated in the mutant. Further analysis of the DE gene set revealed that PnPf2 positively regulates twelve genes that encode effector-like proteins. Two of these genes encode proteins with homology to previously characterised effectors in other fungal phytopathogens. In addition to modulating effector gene expression, PnPf2 may play a broader role in the establishment of a necrotrophic lifestyle by orchestrating the expression of genes associated with plant cell wall degradation and nutrient assimilation.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaochun Ding ◽  
Xiaoyang Zhu ◽  
Lanlan Ye ◽  
Shuangling Xiao ◽  
Zhenxian Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document