effector gene
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 51)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Jennifer E. Huffman ◽  
Guillaume Butler-Laporte ◽  
Atlas Khan ◽  
Erola Pairo-Castineira ◽  
Theodore G. Drivas ◽  
...  

AbstractThe OAS1/2/3 cluster has been identified as a risk locus for severe COVID-19 among individuals of European ancestry, with a protective haplotype of approximately 75 kilobases (kb) derived from Neanderthals in the chromosomal region 12q24.13. This haplotype contains a splice variant of OAS1, which occurs in people of African ancestry independently of gene flow from Neanderthals. Using trans-ancestry fine-mapping approaches in 20,779 hospitalized cases, we demonstrate that this splice variant is likely to be the SNP responsible for the association at this locus, thus strongly implicating OAS1 as an effector gene influencing COVID-19 severity.


2021 ◽  
Author(s):  
Colin Clairet ◽  
Elise J Gay ◽  
Antoine Porquier ◽  
Françoise Blaise ◽  
Claire-Line Marais ◽  
...  

During infection, plant pathogenic fungi secrete a set of molecules collectively known as effectors, involved in overcoming the host immune system and in disease establishment. Effector genes are concertedly expressed as waves all along plant pathogenic fungi lifecycle. However, little is known about how coordinated expression of effector genes is regulated. Since many effector genes are located in repeat-rich regions, the role of chromatin remodeling in the regulation of effector expression was recently investigated. In Leptosphaeria maculans, causing stem canker of oilseed rape, we established that the repressive histone modification H3K9me3 (trimethylation of Lysine 9 of Histone H3), deposited by the histone methyltransferase KMT1, was involved in the regulation of expression of genes highly expressed during infection, including effectors. Nevertheless, inactivation of KMT1 did not induce expression of these genes at the same level as observed during infection of oilseed rape, suggesting that a second regulator, such as a transcription factor (TF), might be involved. Pf2, a TF belonging to the Zn2Cys6 fungal specific TF family, was described in several Dothideomycete species as essential for pathogenicity and effector gene expression. We identified the orthologue of Pf2 in L. maculans, LmPf2, and investigated the role of LmPf2 together with KMT1, by inactivating and over-expressing LmPf2 in a wild type (WT) strain and a ∆kmt1 mutant. Functional analyses of the corresponding transformants highlighted an essential role of LmPf2 in the establishment of pathogenesis. Transcriptomic analyses during axenic growth showed that LmPf2 is involved in the control of effector gene expression. We observed an enhanced effect of the over-expression of LmPf2 on effector gene expression in a ∆kmt1 background, suggesting an antagonist role between KMT1 and LmPf2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria E. Constantin ◽  
Like Fokkens ◽  
Mara de Sain ◽  
Frank L. W. Takken ◽  
Martijn Rep

The fungus Fusarium oxysporum (Fo) is widely known for causing wilt disease in over 100 different plant species. Endophytic interactions of Fo with plants are much more common, and strains pathogenic on one plant species can even be beneficial endophytes on another species. However, endophytic and beneficial interactions have been much less investigated at the molecular level, and the genetic basis that underlies endophytic versus pathogenic behavior is unknown. To investigate this, 44 Fo strains from non-cultivated Australian soils, grass roots from Spain, and tomato stems from United States were characterized genotypically by whole genome sequencing, and phenotypically by examining their ability to symptomlessly colonize tomato plants and to confer resistance against Fusarium Wilt. Comparison of the genomes of the validated endophytic Fo strains with those of 102 pathogenic strains revealed that both groups have similar genomes sizes, with similar amount of accessory DNA. However, although endophytic strains can harbor homologs of known effector genes, they have typically fewer effector gene candidates and associated non-autonomous transposons (mimps) than pathogenic strains. A pathogenic ‘lifestyle’ is associated with extended effector gene catalogs and a set of “host specific” effectors. No candidate effector genes unique to endophytic strains isolated from the same plant species were found, implying little or no host-specific adaptation. As plant-beneficial interactions were observed to be common for the tested Fo isolates, the propensity for endophytism and the ability to confer biocontrol appears to be a predominant feature of this organism. These findings allow prediction of the lifestyle of a Fo strain based on its genome sequence as a potential pathogen or as a harmless or even beneficial endophyte by determining its effectorome and mimp number.


2021 ◽  
Author(s):  
Damien J. Downes ◽  
Amy R. Cross ◽  
Peng Hua ◽  
Nigel Roberts ◽  
Ron Schwessinger ◽  
...  
Keyword(s):  

2021 ◽  
Vol 7 (10) ◽  
pp. 789
Author(s):  
Lin-Lin Shen ◽  
Abdul Waheed ◽  
Yan-Ping Wang ◽  
Oswald Nkurikiyimfura ◽  
Zong-Hua Wang ◽  
...  

Effectors, a group of small proteins secreted by pathogens, play a central role in antagonistic interactions between plant hosts and pathogens. The evolution of effector genes threatens plant disease management and sustainable food production, but population genetic analyses to understand evolutionary mechanisms of effector genes are limited compared to molecular and functional studies. Here we investigated the evolution of the Avr1 effector gene from 111 Phytophthora infestans isolates collected from six areas covering three potato cropping regions in China using a population genetic approach. High genetic variation of the effector gene resulted from diverse mechanisms including base substitution, pre-termination, intragenic recombination and diversifying selection. Nearly 80% of the 111 sequences had a point mutation in the 512th nucleotide (T512G), which generated a pre-termination stop codon truncating 38 amino acids in the C-terminal, suggesting that the C-terminal may not be essential to ecological and biological functions of P. infestans. A significant correlation between the frequency of Avr1 sequences with the pre-termination and annual mean temperature in the collection sites suggests that thermal heterogeneity might be one of contributors to the diversifying selection, although biological and biochemical mechanisms of the likely thermal adaptation are not known currently. Our results highlight the risk of rapid adaptation of P. infestans and possibly other pathogens as well to host resistance, and the application of eco-evolutionary principles is necessary for sustainable disease management in agricultural ecosystems.


Author(s):  
Didi Chen ◽  
Wesley B. Burford ◽  
Giang Pham ◽  
Lishu Zhang ◽  
Laura T. Alto ◽  
...  

2021 ◽  
Author(s):  
Jian Ming Khor ◽  
Jennifer Guerrero-Santoro ◽  
Charles A Ettensohn

The gene regulatory network (GRN) that underlies echinoderm skeletogenesis is a prominent model of GRN architecture and evolution. KirrelL is an essential downstream effector gene in this network and encodes an Ig-superfamily protein required for the fusion of skeletogenic cells and the formation of the skeleton. In this study, we dissected the transcriptional control region of the kirrelL gene of the purple sea urchin, Strongylocentrotus purpuratus. Using plasmid- and BAC-based transgenic reporter assays, we identified key cis-regulatory elements (CREs) and transcription factor inputs that regulate Sp-kirrelL, including direct, positive inputs from two key transcription factors in the skeletogenic GRN, Alx1 and Ets1. We next identified kirrelLcis-regulatory regions from seven other echinoderm species that together represent all classes within the phylum. By introducing these heterologous regulatory regions into developing sea urchin embryos we provide evidence of their remarkable conservation across ~500 million years of evolution. We dissected in detail the kirrelL regulatory region of the sea star, Patiria miniata, and demonstrated that it also receives direct inputs from Alx1 and Ets1. Our findings identify kirrelL as a component of the ancestral echinoderm skeletogenic GRN. They support the view that GRN sub-circuits, including specific transcription factor-CRE interactions, can remain stable over vast periods of evolutionary history. Lastly, our analysis of kirrelL establishes direct linkages between a developmental GRN and an effector gene that controls a key morphogenetic cell behavior, cell-cell fusion, providing a paradigm for extending the explanatory power of GRNs.


JBMR Plus ◽  
2021 ◽  
Author(s):  
James A. Pippin ◽  
Alessandra Chesi ◽  
Yadav Wagley ◽  
Chun Su ◽  
Matthew C. Pahl ◽  
...  
Keyword(s):  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yan Wang ◽  
Feng Yang ◽  
Peng-Fei Zhu ◽  
Asaf Khan ◽  
Zhi-Ping Xie ◽  
...  

Abstract Background Protocols for Agrobacterium rhizogenes-mediated hairy root transformation of the model legume Lotus japonicus have been established previously. However, little efforts were made in the past to quantify and improve the transformation efficiency. Here, we asked whether effectors (nodulation outer proteins) of the nodule bacterium Sinorhizobium sp. NGR234 can promote hairy root transformation of L. japonicus. The co-expressed red fluorescent protein DsRed1 was used for visualization of transformed roots and for estimation of the transformation efficiency. Results Strong induction of hairy root formation was observed when A. rhizogenes strain LBA9402 was used for L. japonicus transformation. Expression of the effector gene nopP in L. japonicus roots resulted in a significantly increased transformation efficiency while nopL, nopM, and nopT did not show such an effect. In nopP expressing plants, more than 65% of the formed hairy roots were transgenic as analyzed by red fluorescence emitted by co-transformed DsRed1. A nodulation experiment indicated that nopP expression did not obviously affect the symbiosis between L. japonicus and Mesorhizobium loti. Conclusion We have established a novel protocol for hairy root transformation of L. japonicus. The use of A. rhizogenes LBA9402 carrying a binary vector containing DsRed1 and nopP allowed efficient formation and identification of transgenic roots.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abdul Waheed ◽  
Yan-Ping Wang ◽  
Oswald Nkurikiyimfura ◽  
Wen-Yang Li ◽  
Shi-Ting Liu ◽  
...  

Effector genes play critical roles in the antagonistic interactions between plants and pathogens. However, knowledge of mutation mechanisms and evolutionary processes in effector genes and the contribution of climatic factors to the evolution of effector genes are fragmented but important in sustainable management of plant diseases and securing food supply under changing climates. Here, we used a population genetic approach to explore the evolution of the Avr4 gene in Phytophthora infestans, the causal agent of potato blight. We found that the Avr4 gene exhibited a high genetic diversity generated by point mutation and sequence deletion. Frameshifts caused by a single base-pair deletion at the 194th nucleotide position generate two stop codons, truncating almost the entire C-terminal, which is important for effector function and R4 recognition in all sequences. The effector is under natural selection for adaptation supported by comparative analyses of population differentiation (FST) and isolation-by-distance between Avr4 sequences and simple sequence repeat marker loci. Furthermore, we found that local air temperature was positively associated with pairwise FST in the Avr4 sequences. These results suggest that the evolution of the effector gene is influenced by local air temperature, and the C-terminal truncation is one of the main mutation mechanisms in the P. infestans effector gene to circumvent the immune response of potato plants. The implication of these results to agricultural and natural sustainability in future climate conditions is discussed.


Sign in / Sign up

Export Citation Format

Share Document