Optical mapping of the functional reentrant circuit of ventricular tachycardia in acute myocardial infarction

Heart Rhythm ◽  
2004 ◽  
Vol 1 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Tamana Takahashi ◽  
Pascal van Dessel ◽  
John C. Lopshire ◽  
William J. Groh ◽  
John Miller ◽  
...  
2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Kobara ◽  
N Naseratun ◽  
Y Watanabe ◽  
H Toba ◽  
T Nakata

Abstract Background Myocardial infarction (MI) is a major cause of death in western countries and Japan, and hypertension is a major risk factor of MI. In hypertensive heart, acute myocardial infarction often leads to lethal ventricular arrhythmia. Nicorandil, an ATP sensitive potassium channel (KATP) opener, is usually used in the treatment of acute myocardial infarction. The effects of nicorandil on ischemic myocyte are fully defined. On the other hand, KATP in neuroterminals is known to regulate norepinephrine release, but the effect of nicorandil on ischemic norepinephrine release in cardiac tissue has remained unexplored. Purpose We examined whether nicorandil suppressed norepinephrine release via neuronal KATP and ventricular arrhythmia during acute ischemia in pressure overload-induced hypertrophic hearts. Methods SD Rats were divided into two groups; abdominal aortic constriction (AAC) group and sham-operated (Sham) group. Four weeks after constriction, cardiac geometry and function were examined using echocardiography. Then, myocardial ischemia was induced by the left anterior descending artery occlusion for 100 minutes in the presence or absence of intravenous infusion of nicorandil. Cardiac interstitial norepinephrine concentration in ischemic region was measured using the microdialysis method and concentration of cyclic AMP, a second messenger of norepinephrine, in cardiac tissue was measured by ELISA. Ventricular arrhythmias were monitered by ECG during whole ischemic period. Results Four weeks after constriction, remarkable left ventricular wall thickening was observed in AAC group. Before ischemia, ventricular arrhythmia was not found in both groups. Number of ventricular arrhythmia, including ventricular tachycardia and ventricular fibrillation, was increased in early ischemic period (- 40 min) in both groups, and was grater in AAC group. Before ischemia, interstitial norepinephrine concentration in cardiac tissue was higher level in AAC group than in Sham group. Ischemia obviously increased norepinephrine concentration in both groups time dependently and AAC further increased norepinephrine than Sham group. Concentration of cyclic AMP in cardiac tissue was raised in early ischemic period (- 40 min) and then gradually decreased. Nicorandil significantly suppressed the number of ventricular arrhythmias, and abolished the ventricular tachycardia and fibrillation without hemodynamic alterations. Nicorandil also attenuated norepinephrine and cAMP enhancement in acute ischemic period in both groups. Conclusion Ischemia-induced ventricular arrhythmia was more frequent and severe in hypertrophic hearts and interstitial norepinephrine enhancement may play a role in this ischemic arrhythmia. Nicorandil suppressed ischemia-induced interstitial norepinephrine release by neuronal KATP opening, which attenuated ventricular arrhythmias in normal and hypertrophic hearts.


2019 ◽  
Vol Volume 11 ◽  
pp. 281-289 ◽  
Author(s):  
Shipeng Wang ◽  
Hui Gao ◽  
Zewen Ru ◽  
Yanan Zou ◽  
Yilan Li ◽  
...  

2006 ◽  
Vol 290 (3) ◽  
pp. H1298-H1306 ◽  
Author(s):  
William R. Mills ◽  
Niladri Mal ◽  
Farhad Forudi ◽  
Zoran B. Popovic ◽  
Marc S. Penn ◽  
...  

Late myocardial infarction (MI) is associated with ventricular arrhythmias and sudden cardiac death. The exact mechanistic relationship between abnormal cellular electrophysiology, conduction abnormalities, and arrhythmogenesis associated with late MI is not completely understood. We report a novel, rapid dye superfusion technique to enable whole heart, high-resolution optical mapping of late MI. Optical mapping of action potentials was performed in normal rats and rats with anterior MI 7 days after left anterior descending artery ligation. Hearts from normal rats exhibited normal action potentials and impulse conduction. With the use of programmed stimulation to assess arrhythmia inducibility, 29% of hearts with late MI had inducible sustained ventricular tachycardia, compared with 0% in normal rats. A causal relationship between the site of infarction, abnormal action potential conduction (i.e., block and slow conduction), and arrhythmogenesis was observed. Optical mapping techniques can be used to measure high-resolution action potentials in a whole heart model of late MI. This experimental model reproduces many of the electrophysiological characteristics (i.e., conduction slowing, block, and ventricular tachycardia) associated with MI in patients. Importantly, the results of this study can enhance our ability to understand the interplay between cellular heterogeneity, conduction abnormalities, and arrhythmogenesis associated with MI.


Sign in / Sign up

Export Citation Format

Share Document