An Fe(II)-oxidizing consortium from Wudalianchi volcano spring in Northeast China for bioleaching of Cu and Ni from printed circuit boards (PCBs) with the dominance of Acidithiobacillus spp.

2022 ◽  
Vol 167 ◽  
pp. 105355
Author(s):  
Shuang Zhang ◽  
Jian Yang ◽  
Boyu Dong ◽  
Jiani Yang ◽  
Hong Pan ◽  
...  
2008 ◽  
Vol 128 (11) ◽  
pp. 657-662 ◽  
Author(s):  
Tsuyoshi Maeno ◽  
Yukihiko Sakurai ◽  
Takanori Unou ◽  
Kouji Ichikawa ◽  
Osamu Fujiwara

2018 ◽  
Vol 23 (2) ◽  
pp. 141-148
Author(s):  
S.Sh. Rekhviashvili ◽  
◽  
M.O. Mamchuev ◽  
V.V. Narozhnov ◽  
M.M. Oshkhunov ◽  
...  

2013 ◽  
Vol 61 (3) ◽  
pp. 731-735
Author(s):  
A.W. Stadler ◽  
Z. Zawiślak ◽  
W. Stęplewski ◽  
A. Dziedzic

Abstract. Noise studies of planar thin-film Ni-P resistors made in/on Printed Circuit Boards, both covered with two different types of cladding or uncladded have been described. The resistors have been made of the resistive-conductive-material (Ohmega-Ply©) of 100 Ώ/sq. Noise of the selected pairs of samples has been measured in the DC resistance bridge with a transformer as the first stage in a signal path. 1/f noise caused by resistance fluctuations has been found to be the main noise component. Parameters describing noise properties of the resistors have been calculated and then compared with the parameters of other previously studied thin- and thick-film resistive materials.


2014 ◽  
Vol 13 (10) ◽  
pp. 2601-2607 ◽  
Author(s):  
Jae-chun Lee ◽  
Manoj Kumar ◽  
Min-Seuk Kim ◽  
Jinki Jeong ◽  
Kyoungkeun Yoo

Author(s):  
Bhanu Sood ◽  
Michael Pecht

Abstract Failures in printed circuit boards account for a significant percentage of field returns in electronic products and systems. Conductive filament formation is an electrochemical process that requires the transport of a metal through or across a nonmetallic medium under the influence of an applied electric field. With the advent of lead-free initiatives, boards are being exposed to higher temperatures during lead-free solder processing. This can weaken the glass-fiber bonding, thus enhancing conductive filament formation. The effect of the inclusion of halogen-free flame retardants on conductive filament formation in printed circuit boards is also not completely understood. Previous studies, along with analysis and examinations conducted on printed circuit boards with failure sites that were due to conductive filament formation, have shown that the conductive path is typically formed along the delaminated fiber glass and epoxy resin interfaces. This paper is a result of a year-long study on the effects of reflow temperatures, halogen-free flame retardants, glass reinforcement weave style, and conductor spacing on times to failure due to conductive filament formation.


Sign in / Sign up

Export Citation Format

Share Document