resistance fluctuations
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 3)

H-INDEX

27
(FIVE YEARS 2)

Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1315 ◽  
Author(s):  
Alessia Lo Dico ◽  
Daniela Salvatore ◽  
Cristina Martelli ◽  
Dario Ronchi ◽  
Cecilia Diceglie ◽  
...  

Glioblastoma (GBM) is the most common astrocytic-derived brain tumor in adults, characterized by a poor prognosis mainly due to the resistance to the available therapy. The study of mitochondria-derived oxidative stress, and of the biological events that orbit around it, might help in the comprehension of the molecular mechanisms at the base of GBM responsiveness to Temozolomide (TMZ). Sensitive and resistant GBM cells were used to test the role of mitochondrial ROS release in TMZ-resistance. Chaperone-Mediated Autophagy (CMA) activation in relation to reactive oxygen species (ROS) release has been measured by monitoring the expression of specific genes. Treatments with H2O2 were used to test their potential in reverting resistance. Fluctuations of cytoplasmic ROS levels were accountable for CMA induction and cytotoxic effects observed in TMZ sensitive cells after treatment. On the other hand, in resistant cells, TMZ failed in producing an increase in cytoplasmic ROS levels and CMA activation, preventing GBM cell toxicity. By increasing oxidative stress, CMA activation was recovered, as also cell cytotoxicity, especially in combination with TMZ treatment. Herein, for the first time, it is shown the relation between mitochondrial ROS release, CMA activation and TMZ-responsiveness in GBM.


Nanoscale ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 4719-4725 ◽  
Author(s):  
Botond Sánta ◽  
Zoltán Balogh ◽  
Agnes Gubicza ◽  
László Pósa ◽  
Dávid Krisztián ◽  
...  

We demonstrate the universal 1/f type current noise in Ag based, nanofilamentary resistive switches which arises from internal resistance fluctuations.


2018 ◽  
Vol 17 (02) ◽  
pp. 1850016 ◽  
Author(s):  
S. Gomri ◽  
J. Seguin ◽  
T. Contaret ◽  
T. Fiorido ◽  
K. Aguir

We propose a new method for obtaining a fluctuation-enhanced sensing (FES) signature of a gas using a single metal oxide (MOX) gas micro sensor. Starting from our model of adsorption–desorption (A–D) noise previously developed, we show theoretically that the product of frequency by the power spectrum density (PSD) of the gas sensing layer resistance fluctuations often has a maximum which is characteristic of the gas. This property was experimentally confirmed in the case of the detection of NO2 and O3 using a WO3 sensing layer. This method could be useful for classifying gases. Furthermore, our noise measurements confirm our previous model showing that PSD of the A–Dnoise in MOX gas sensor is a combination of Lorentzians having a low frequency magnitude and a cut-off frequency which depends on the nature of the detected gas.


2017 ◽  
Vol 24 (4) ◽  
pp. 585-590 ◽  
Author(s):  
Krzysztof Mleczko ◽  
Piotr Ptak ◽  
Zbigniew Zawiślak ◽  
Marcin Słoma ◽  
Małgorzata Jakubowska ◽  
...  

AbstractGraphene is a very promising material for potential applications in many fields. Since manufacturing technologies of graphene are still at the developing stage, low-frequency noise measurements as a tool for evaluating their quality is proposed. In this work, noise properties of polymer thick-film resistors with graphene nano-platelets as a functional phase are reported. The measurements were carried out in room temperature. 1/f noise caused by resistance fluctuations has been found to be the main component in the specimens. The parameter values describing noise intensity of the polymer thick-film specimens have been calculated and compared with the values obtained for other thick-film resistors and layers used in microelectronics. The studied polymer thick-film specimens exhibit rather poor noise properties, especially for the layers with a low content of the functional phase.


Sensors ◽  
2017 ◽  
Vol 17 (4) ◽  
pp. 757
Author(s):  
Łukasz Lentka ◽  
Janusz Smulko ◽  
Mateusz Kotarski ◽  
Claes-Göran Granqvist ◽  
Radu Ionescu

2016 ◽  
Vol 13 (1) ◽  
pp. 71-82
Author(s):  
Marjan Urekar ◽  
Marina Bulat ◽  
Bojan Vujicic ◽  
Dragan Pejic

Calibration of measuring transducers for precision measurement is done by measuring voltage drop at the resistor standard, produced by output dc current proportional to the input measured value. Resistance fluctuations due to the temperature coefficient of the resistor standard are minor, thanks to the stable temperature conditions in laboratory environment. This fact brings the need to calculate the effect of resistor self-heating on its resistance. This thermal effect, produced by the flow of current through the resistor, is often disregarded. For the precise measurements this can be a significant source of error and must be quantified. This paper describes mathematical model of measurement error, resistor self-heating coefficient is defined, as it?s not usually given in product datasheets. The effect on measurement results is given in detail. Composite resistor standard prototype is described, made from off-the-shelf mass produced components, calculated and hand selected to cancel the self-heating coefficient effects. The prototype is compared to the existing commercially available high performance resistor standard.


Sign in / Sign up

Export Citation Format

Share Document