free solder
Recently Published Documents


TOTAL DOCUMENTS

2705
(FIVE YEARS 292)

H-INDEX

66
(FIVE YEARS 6)

Author(s):  
Zsolt Salyi ◽  
George Kaptay ◽  
Daniel Koncz-Horvath ◽  
Laszlo Somlyai-Sipos ◽  
Peter Zoltan Kovacs ◽  
...  

AbstractThe goal of this research is to study the applicability of the diffusion boriding process as a high-temperature thermochemical heat treatment to enhance the lifetime of steel selective soldering tools. The main purpose of the work is to discuss the behavior of double-phase (FeB/Fe2B) iron-boride coating on the surface of different steels (DC04, C45, CK60, and C105U) against the stationary SAC309 lead-free solder liquid alloy. The boride coating was formed on the surface of the steel samples through the powder pack boriding technique. The microstructure of the formed layer was examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The borided samples were first cut in half and then immersed into a stationary SAC309 lead-free solder liquid alloy (Sn–3Ag–0.9Cu) for 40 days. Microstructure examinations were performed by SEM with energy-dispersive spectroscopy and an elemental distribution map after the dissolution test. Excessive dissolution/corrosion of the original steel surface was observed at the steel/SAC interfaces, leading also to the formation of Fe–Sn intermetallic phases. This was found to be the major reason for the failure of selective soldering tools made of steel. On the contrary, no dissolution and no intermetallic compounds were observed at the FeB/SAC and at the Fe2B/SAC interfaces; as a result, the thicknesses of the FeB and Fe2B phases remained the same during the 40-day dissolution tests. Thus, it was concluded that both FeB and Fe2B phases show excellent resistance against the aggressive liquid solder alloy. The results of the dissolution tests show a good agreement with the thermodynamic calculations.


Author(s):  
Montajar Sarkar ◽  
Fahmida Gulshan ◽  
Abu Raihan Md. Harunur Rashid ◽  
Muhammad Hasanuzzaman

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 108
Author(s):  
Kexin Xu ◽  
Xing Fu ◽  
Xinjie Wang ◽  
Zhiwei Fu ◽  
Xiaofeng Yang ◽  
...  

The grain orientation of Sn-based solder joints on copper pillars under the combined action of electron wind force and temperature gradient greatly affects their electromigration damage. The copper pillars with Sn-1.8Ag lead-free solder on the top was subjected to a current density of 1.5 × 104 A/cm2 at 125 °C to study the electromigration behaviors. The grain orientation was characterized by scanning electron microscopy (SEM) equipped with electron backscattered diffraction (EBSD) detector. Metal dissolution and voids formation in the cathode as well as massive intermetallic compounds(IMC) accumulation in the anode were observed after electromigration. Closer examination of solder joints revealed that the Sn grain whose c-axis perpendicular to electric current may have retarded Cu diffusion to anode and IMC accumulation. In addition, the newly formed Cu6Sn5 exhibited preferred orientation related to the electric current direction.


2021 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Stefan Rung ◽  
Ralf Hellmann

We report on structuring copper representing soldering pads of printed circuit boards by laser-induced periodic surface structures. Femtosecond laser radiation is used to generate low spatial frequency laser-induced surface structures, having a spatial period of 992 nm and a modulation depth of 120 nm, respectively. The slump of screen-printed solder paste is measured to compare the solder coverage on the pads after the solder process on a hot plate. A comparative study of the coverage of solder paste on a fresh polished pad, a pad stored for two weeks, and femtosecond laser-structured pads reveals the improved wettability of structured pads even after storage. In addition, leaded and lead-free solder pads are compared with the particular advantages of the solder-free pad when periodically laser structured. Our findings are attributed to two major effects: namely, the increase of the surface area and the improved surface chemical wettability. Overall, the application of laser-induced periodic surface structures helps to reduce the demand of lead-based solder in the electronic industry and provides a feasible method for a fast and spatial selective way of surface functionalization.


Author(s):  
Huizhen Huang ◽  
Qinghuan Zhang ◽  
Gewang Shuai ◽  
Xinyuan Yu ◽  
Tingfang Tian

2021 ◽  
Author(s):  
Y. S. Zou ◽  
M. H. Chung ◽  
C. L. Gan ◽  
Yun Ting Hsu ◽  
Hem Takiar
Keyword(s):  

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1941
Author(s):  
Byungmin Ahn

In the field of electronics packaging, Pb-bearing solder alloys are mostly used as robust interconnecting materials [...]


Sign in / Sign up

Export Citation Format

Share Document