scholarly journals The north polar basal unit of Mars: An Amazonian record of surface processes and climate events

Icarus ◽  
2021 ◽  
pp. 114716
Author(s):  
Stefano Nerozzi ◽  
Maya R. Ortiz ◽  
John W. Holt
2010 ◽  
Vol 6 (3) ◽  
pp. 295-303 ◽  
Author(s):  
M. Siddall ◽  
E. J. Rohling ◽  
T. Blunier ◽  
R. Spahni

Abstract. Millennial variability is a robust feature of many paleoclimate records, at least throughout the last several glacial cycles. Here we use the mean signal from Antarctic climate events 1 to 4 to probe the EPICA Dome C temperature proxy reconstruction through the last 500 ka for similar millennial-scale events. We find that clusters of millennial events occurred in a regular fashion over half of the time during this with a mean recurrence interval of 21 kyr. We find that there is no consistent link between ice-rafted debris deposition and millennial variability. Instead we speculate that changes in the zonality of atmospheric circulation over the North Atlantic form a viable alternative to freshwater release from icebergs as a trigger for millennial variability. We suggest that millennial changes in the zonality of atmospheric circulation over the North Atlantic are linked to precession via sea-ice feedbacks and that this relationship is modified by the presence of the large, Northern Hemisphere ice sheets during glacial periods.


2020 ◽  
Author(s):  
Patricio Becerra ◽  
Susan Conway ◽  
Nicholas Thomas ◽  

<p>In 2008, the High Resolution Imaging Science Experiment (HiRISE) on board NASA’s MRO fortuitously captured several discrete clouds of material in the process of cascading down a steep scarp of the water-ice-rich north polar layered deposits (NPLD). The events were only seen during a period of ~4 weeks, near the onset of martian northern spring in 2008, when the seasonal cover of CO2 is beginning to sublimate from the north polar regions. Russell et al. [1] analyzed the morphology of the clouds, inferring that the particles involved were mechanically analogous to terrestrial “dry, loose snow or dust”, so that the events were similar to terrestrial “powder avalanches” [2]. HiRISE confirmed the seasonality of avalanche occurrence the following spring, and continued to capture between 30 and 50 avalanches per season (fig. 1b,c) between 2008 and 2019, for a total of 7 Mars Years (MY29–MY35) of continuous scarp monitoring.</p><p>In this work we will present statistics on these events, in an attempt to quantify their effect on the mass balance of the NPLD, and with respect to competing processes such as viscous deformation and stress-induced block falls that do not trigger avalanches [3,4]. We also use a 1D thermal model [5] to investigate the sources and trigger mechanisms of these events. The model tracks the accumulation and ablation of seasonal CO2 frost on a martian surface. Russell et al. [1] support an initiation through gas-expansion related to the presence of CO2 frost on the scarp. Therefore the amount of frost that lingers on different sections of the model scarp at the observed time of the avalanches will provide evidence either for or against this particular mechanism. We will present preliminary results and discuss their implications.</p><p>References: [1] P. Russell et al. (2008) Geophys. Res. Lett. 35, L23204. [2] D. McClung, P.A. Schaerer (2006), Mountaineers, Seattle Wash. [3] Sori, M. M., et al., Geophys. Res. Lett., 43. [4] Byrne et al. (2016), 6th Int. Conf. Mars Polar Sci. Exploration [4] C. M. Dundas and S. Byrne (2010) Icarus 206, 716.</p>


Author(s):  
Matthew Chojnacki ◽  
David A. Vaz ◽  
Simone Silvestro ◽  
David C.A. Silva
Keyword(s):  

Author(s):  
K. Labitzke ◽  
M. Kunze ◽  
S. Brönnimann ◽  
K. Labitzke ◽  
M. Kunze ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document