gas expansion
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 68)

H-INDEX

25
(FIVE YEARS 4)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kuan Wu ◽  
Shiliang Shi ◽  
Yi Lu ◽  
He Li ◽  
Min Li

Gas extraction is most commonly used to control gas disasters in coal mines. The distribution of the plastic zone around a borehole and the sealing quality are key factors affecting gas extraction. In this paper, the plastic zone was simulated by COMSOL, and a theoretical equation of the plastic zone radius was derived. In addition, an antispray hole equipment and the “two plugging and one injection” sealing technology were proposed. The results show that a larger borehole pore size corresponds to a larger plastic zone and larger range of pressure relief of the borehole. The error between the calculated and simulated plastic zone radii is within 1%, and the modified equation is applicable to Puxi mine. The loss and harm caused by borehole spraying are reduced by applying antispray hole equipment. By applying the “two plugging and one injection” sealing technology and phosphogypsum-based self-produced gas expansion paste material to block the borehole, the sealing quality is improved and an accurate gas mixing flow, pure flow, and concentration were obtained. As the plastic zone enlarges, the gas extraction flow gradually increases with, but the relative variation of flow first increases and subsequently decreases. Considering the safety and economy of construction, the optimal radius of the plastic zone is 64.9 mm.


2021 ◽  
Author(s):  
Mohamed Ibrahim Mohamed ◽  
Ahmed Mahmoud El-Menoufi ◽  
Eman Abed Ezz El-Regal ◽  
Abd Allah Moustafa Hegazy ◽  
Khaled Mohamed Mansour ◽  
...  

Abstract Oil and gas operators must measure or calculate the shut-in wellhead pressure for well integrity applications. Some operators adopt a method that gives satisfactory results for dry gas and lean gas condensate. They are using the steady-state simulator to calculate the wellhead pressure at a very low gas rate. The friction losses become negligible, and the only losses are due to hydrostatic head simulating (to some extent) the shut-in condition. This method again can work well with oil producers with low GOR/Bubble point pressure as the production string will be nearly a single phase. The problem is that this method is inaccurate for high GOR/CGR wells because of phase redistribution and the error can be significantly high. Phase redistribution occurs After shut-in, liquid droplets will accumulate at the bottom of the well. The interface liquid/gas will move up with sometimes liquid cushion is being re-injected back in the reservoir due to gravity or gas expansion in the tubing while the gas/liquid interface will move down a little. Many factors affect the behavior, including the well deviation, fluid properties, and the productivity and the injectivity of the formation. Thus, simulating this behavior requires a dynamic multiphase simulation. As some of the fluids might return to the formation, as a result of compressibility, coupling with a numerical reservoir simulation to model the near wellbore is also necessary. In this paper, we applied a dynamic multiphase model to predict the shut-in wellhead pressure. We used an uncertainty analysis approach to investigate the effect of many parameters on the accuracy of the results. We presented all recommended calculation procedures with a guide to minimizing the uncertainty associated. We presented our approach to three actual wells with different configurations and fluid properties with a deviation of +-10% of the real measurements.


Author(s):  
E.S. Briskin ◽  
Ya.V. Kalinin ◽  
L.D. Smirnaya

The problem of lifting the foot of the walking propulsion device of an underwater mobile robot is considered, taking into account the additional “compression” force acting on it. A mathematical model has been developed for the detachment of a propulsion foot from the ground, based on Henry's laws establishing the concentration of dissolved air in a liquid, the law of gas expansion at a constant temperature, Darcy's law on fluid filtration and the theorem on the motion of the center of mass of a solid body. The linearized model allows to obtain and analytical solutions. Based on the solution of the variational problem, optimal modes of lifting the foot of the walking propulsion of an underwater mobile robot are established.


2021 ◽  
Vol 14 (9) ◽  
pp. 6039-6056
Author(s):  
Brandon Bottorff ◽  
Emily Reidy ◽  
Levi Mielke ◽  
Sebastien Dusanter ◽  
Philip S. Stevens

Abstract. A new instrument for the measurement of atmospheric nitrous acid (HONO) and hydroxyl radicals (OH) has been developed using laser photofragmentation (LP) of HONO at 355 nm after expansion into a low-pressure cell, followed by resonant laser-induced fluorescence (LIF) of the resulting OH radical fragment at 308 nm similar to the fluorescence assay by gas expansion technique (FAGE). The LP/LIF instrument is calibrated by determining the photofragmentation efficiency of HONO and calibrating the instrument sensitivity for detection of the OH fragment. In this method, a known concentration of OH from the photo-dissociation of water vapor is titrated with nitric oxide to produce a known concentration of HONO. Measurement of the concentration of the OH radical fragment relative to the concentration of HONO provides a measurement of the photofragmentation efficiency. The LP/LIF instrument has demonstrated a 1σ detection limit for HONO of 9 ppt for a 10 min integration time. Ambient measurements of HONO and OH from a forested environment and an urban setting are presented along with indoor measurements to demonstrate the performance of the instrument.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6031
Author(s):  
Robert Bayer ◽  
Jiří Maxa ◽  
Pavla Šabacká

In this paper, we describe the possibility of using the energy of a compressed air flow, where cryogenic temperatures are achieved within the flow behind the nozzle, when reaching a critical flow in order to maximize the energy gained. Compared to the energy of compressed air, the energy obtained thermoelectrically is negligible, but not zero. We are therefore primarily aiming to maximize the use of available energy sources. Behind the aperture separating regions with a pressure difference of several atmospheres, a supersonic flow with a large temperature drop develops. Based on the Seebeck effect, a thermocouple is placed in these low temperatures to create a thermoelectric voltage. This paper contains a mathematical-physical analysis for proper nozzle design, controlled gas expansion and ideal placement of a thermocouple within the flow for best utilization of the low temperature before a shockwave formation. If the gas flow passes through a perpendicular shockwave, the velocity drops sharply and the gas pressure rises, thereby increasing the temperature. In contrast, with a conical shockwave, such dramatic changes do not occur and the cooling effect is not impaired. This article also contains analyses for proper forming of the head shape of the thermocouple to avoid the formation of a detached shockwave, which causes temperature stagnation resulting in lower thermocouple cooling efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Geng Jiabo ◽  
Liu Jiangtong ◽  
Li Xiaoshuang ◽  
Nie Wen ◽  
Zhang Dongming ◽  
...  

Adopting yellow mud as barrier layer materials, coal and gas delay outburst experiments under conditions of geostress and gas accumulation disturbance were carried out by using self-developed simulation system, to find out roles of geostress and gas pressure played in the process of the delay outburst and ways to predict it, through analysis of variations of gas pressure, and AE characteristics during the process. The results show that after the geostress increased by 0.11 MPa from 1.80 MPa, an outburst occurs, while in gas accumulation situations, the gas pressure increase of 0.27 MPa from 0.67 MPa induces an outburst; hence, geostress is one of the dominant factors impacting an outburst occurrence. The lasting time of the outburst triggering under geostress disturbance is shorter than that under gas accumulation disturbance, while the duration of the outburst development under gas accumulation conditions is longer than that under geostress conditions. Coal seam breakage by geostress is the precondition for an outburst risk, and gas expansion energy is the dominant parameter influencing the duration of the outburst development. The AE signals show distinctive features in different stages of the outburst under geostress disturbance. At the preparation stage of the outburst, the AE signals increase sharply but have a low intensity and then drop to a lower balance level. At the triggering stage, the AE signals become active and increasing until up to the peak where the outburst occurs, and the intensity is highest.


Author(s):  
Tim Wittmann ◽  
Sebastian Lück ◽  
Christoph Bode ◽  
Jens Friedrichs

Radial turbines used in automotive fuel cell turbochargers operate with humid air. The gas expansion in the turbine causes droplets to form, which then grow through condensation. The associated release of latent heat and decrease in the gaseous mass flow strongly influence the thermodynamics of the turbine. This study aims to investigate these phenomena. For this purpose, the classical nucleation theory and Young’s growth law are integrated into a Euler–Lagrange approach. The main advantages of this approach are the calculation of individual droplet trajectories and a full resolution of the droplet spectrum. The results indicate an onset of nucleation at the blade tip and in the tip gap, followed by nucleation over the entire blade span, depending on the humidity at the turbine inlet. With a saturated turbine inflow, condensation causes the outlet temperature to rise to almost the same level as at the inlet. In addition, condensation losses reduce the efficiency and the latent heat released by condensation leads to significant thermal throttling.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1101
Author(s):  
Chaojie Wang ◽  
Xiaowei Li ◽  
Changhang Xu ◽  
Yujia Chen ◽  
Zexiang Tang ◽  
...  

The law of gas initial desorption from coals is greatly important for understanding the occurrence mechanism and predicting coal and gas outburst (hereinafter referred to as ‘outburst’). However, dynamic characterization of gas initial desorption remains to be investigated. In this study, by monitoring the gas pressure and temperature of tectonically deformed (TD) coal and primary-undeformed (PU) coal, we established the evolution laws of gas key parameters during the initial desorption. The results indicate that the gas pressure drop rate, mass flow rate, initial desorption rate, and gas velocity increase with increasing gas pressure, with stronger gas dynamic effect, generating a high pressure gradient on the coal surface. Under the same gas pressure, the pressure gradient formed on the TD coal surface is greater than that formed on the surface of the PU coal, resulting in easily initiating an outburst in the TD coal. Moreover, the increased gas pressure increases temperature change rates (falling rate and rising rate) of coal mass. The minimum and final stable temperatures in the TD coal are generally lower compared to the PU coal. The releasing process of gas expansion energy can be divided into two stages exhibiting two peaks which increase as gas pressure increases. The two peak values for the TD coal both are about 2–3 times of those of the PU coal. In addition, the total gas expansion energy released by TD coal is far greater than that released by PU coal. The two peaks and the total values of gas expansion energy also prove that the damage of gas pressure to coal mass increases with the increased pressure, more likely producing pulverized coals and more prone to initiate an outburst.


Sign in / Sign up

Export Citation Format

Share Document