Investigation and optimization of the behavior of heat transfer and flow of MWCNT-CuO hybrid nanofluid in a brazed plate heat exchanger using response surface methodology

Author(s):  
Iman Fazeli ◽  
Mohammad Reza Sarmasti Emami ◽  
Alimorad Rashidi
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Faraz Afshari ◽  
Azim Doğuş Tuncer ◽  
Adnan Sözen ◽  
Halil Ibrahim Variyenli ◽  
Ataollah Khanlari ◽  
...  

Purpose Using suspended nanoparticles in the base fluid is known as one of the most efficient ways for heat transfer augmentation and improving the thermal efficiency of various heat exchangers. Different types of nanofluids are available and used in different applications. The main purpose of this study is to investigate the effects of using hybrid nanofluid and number of plates on the performance of plate heat exchanger. In this study, TiO2/water single nanofluid and TiO2-Al2O3/water hybrid nanofluid with 1% particle weight ratio have been used to prepare hybrid nanofluid to use in plate type heat exchangers with three various number of plates including 8, 12 and 16. Design/methodology/approach The experiments have been conducted with the aim of examining the impact of plates number and used nanofluids on heat transfer enhancement. The performance tests have been done at 40°C, 45°C, 50°C and 55°C set outlet temperatures and in five various Reynolds numbers between 1,600 and 3,800. Also, numerical simulation has been applied to verify the heat and flow behavior inside the heat exchangers. Findings The results indicated that using both nanofluids raised the thermal performance of all tested exchangers which have a various number of plates. While the major outcomes of this study showed that TiO2-Al2O3/water hybrid nanofluid has priority when compared to TiO2/water single type nanofluid. Utilization of TiO2-Al2O3/water nanofluid led to obtaining an average improvement of 7.5%, 9.6% and 12.3% in heat transfer of heat exchangers with 8, 12 and 16 plates, respectively. Originality/value In the present work, experimental and numerical analyzes have been conducted to investigate the influence of using TiO2-Al2O3/water hybrid nanofluid in various plate heat exchangers. The attained findings showed successful utilization of TiO2-Al2O3/water nanofluid. Based on the obtained results increasing the number of plates in the heat exchanger caused to obtain more increment by using both types of nanofluids.


2016 ◽  
Vol 37 (3) ◽  
pp. 19-29 ◽  
Author(s):  
Janusz T. Cieśliński ◽  
Artur Fiuk ◽  
Krzysztof Typiński ◽  
Bartłomiej Siemieńczuk

Abstract This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx). The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.


2016 ◽  
Vol 831 ◽  
pp. 188-197 ◽  
Author(s):  
Janusz T. Cieśliński ◽  
Artur Fiuk ◽  
Wojciech Miciak ◽  
Bartłomiej Siemieńczuk

This study is focused on experimental investigation of a selected type of brazed plate heat exchanger (PHEx). The main aim of the paper was to experimentally check the ability of nanofluids to enhance the performance of PHEx. A typical water-Al2O3 nanofluid was tested and compared to that of the base fluid, i.e. water. Nanoparticles were tested at the concentration of 0.1% and 1% by weight. Impact of the 1 day and 3 days break of operation of the tested PHEx on its performance was of particular interest. Pressure drop in all runs was measured as well. The Wilson approach was applied in order to estimate heat transfer coefficients for the PHEx passages. It was observed, that addition of nanoparticles resulted in deterioration of an overall heat transfer coefficient for the selected PHEx and tested conditions, i.e. temperature range and Reynolds number. Moreover, substantial increase of pressure drop was recorded after each break of operation of the tested PHEx.


2020 ◽  
Vol 175 ◽  
pp. 115309 ◽  
Author(s):  
Barış Gürel ◽  
Volkan Ramazan Akkaya ◽  
Merve Göltaş ◽  
Çağla Nur Şen ◽  
Onur Vahip Güler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document