scholarly journals Interval Type 2 Fuzzy Logic Controller for Rotor Voltage of a Doubly-Fed Induction Generator and Pitch Angle of Wind Turbine Blades

2015 ◽  
Vol 48 (3) ◽  
pp. 2195-2202 ◽  
Author(s):  
Iván Villanueva ◽  
Pedro Ponce ◽  
Arturo Molina
Inventions ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 21
Author(s):  
Ahmed Vall Hemeyine ◽  
Ahmed Abbou ◽  
Anass Bakouri ◽  
Mohcine Mokhlis ◽  
Sidi Mohamed ould Mohamed El Moustapha

This paper presents an implementation of a new robust control strategy based on an interval type-2 fuzzy logic controller (IT2-FLC) applied to the wind energy conversion system (WECS). The wind generator used was a variable speed wind turbine based on a doubly fed induction generator (DFIG). Fuzzy logic concepts have been applied with great success in many applications worldwide. So far, the vast majority of systems have used type-1 fuzzy logic controllers. However, T1-FLC cannot handle the high level of uncertainty in systems (complex and non-linear systems). The amount of uncertainty in a system could be reduced by using type-2 fuzzy logic since it offers better capabilities to handle linguistic uncertainties by modeling vagueness and unreliability of information. A new concept based on an interval type-2 fuzzy logic controller (IT-2 FLC) was developed because of its uncertainty management capabilities. Both these control strategies were designed and their performances compared for the purpose of showing the control most efficient in terms of reference tracking and robustness. We made a comparison between the performance of the type-1 fuzzy logic controller (T1-FLC) and interval type-2 fuzzy logic controller (IT2-FLC). The simulation results clearly manifest the height robustness of the interval type-2 fuzzy logic controller in comparison to the T1-FLC in terms of rise time, settling time, and overshoot value. The simulations were realized by MATLAB/Simulink software.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
J. S. Sathiyanarayanan ◽  
A. Senthil Kumar

Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Keltoum Loukal ◽  
Leila Benalia

Interval type-2 fuzzy logic controller (IT2FLC) method for controlling the speed with a direct stator flux orientation control of doubly fed induction motor (DFIM) is proposed. The fuzzy controllers have demonstrated their effectiveness in the control of nonlinear systems, and in many cases it is proved that their robustness and performance are less sensitive to parameters variation over conventional controllers. The synthesis of stabilizing control laws design based on IT2FLC is developed. A comparative analysis between type-1 fuzzy logic controller (T1FLC) and IT2FLC of the DFIM is shown. Simulation results show the feasibility and the effectiveness of the suggested method to the control of the DFIM under different operating conditions such as load torque and in the presence of parameters variation.


2012 ◽  
Vol 63 (5) ◽  
pp. 281-288 ◽  
Author(s):  
Hany M. Hasanien ◽  
Essam A. Al-Ammar

Doubly fed induction generator (DFIG) based wind farm is today the most widely used concept. This paper presents dynamic response enhancement of DFIG based wind farm under remote fault conditions using the fuzzy logic controller. The goal of the work is to improve the dynamic response of DFIG based wind farm during and after the clearance of fault using the proposed controller. The stability of wind farm during and after the clearance of fault is investigated. The effectiveness of the fuzzy logic controller is then compared with that of a PI controller. The validity of the controllers in restoring the wind farms normal operation after the clearance of fault is illustrated by the simulation results which are carried out using MATLAB/SIMULINK. Simulation results are analyzed under different fault conditions.


Author(s):  
Loukal Keltoum ◽  
Benalia Leila

The fuzzy controllers have demonstrated their effectiveness in the control of nonlinear systems, and in many cases have established their robust and that their performance is less sensitive to parameter variations over conventional controllers. In this paper, Interval Type-2 Fuzzy Logic Controller (IT2FLC) method is proposed for controlling the speed with a direct stator flux orientation control of doubly-fed induction motor (DFIM), we made a comparison between the Type-1 Fuzzy Logic Control (T1FLC) and IT2FLC of the DFIM, first a modeling of DFIM is expressed in a (d-q) synchronous rotating frame. After the development and the synthesis of a stabilizing control laws design based on IT2FLC. We use this last approach to the control of the DFIM under different operating conditions such as load torque and in the presence of parameter variation. The obtained simulation results show the feasibility and the effectiveness of the suggested method.


Author(s):  
Abdelhak Dida ◽  
Djilani Benattous

This paper proposes a novel variable speed control algorithm for a grid connected doubly-fed induction generator (DFIG) system. The main objective is to track the maximum power curve characteristic by using an adaptive fuzzy logic controller, and to compare it with the conventional optimal torque control method for large inertia wind turbines. The role of the FLC is to adapt the transfer function of the harvested mechanical power controller according to the operating point in variable wind speed.  The control system has two sub-systems for the rotor side and the grid side converters (RSC, GSC). Active and reactive power control of the back-to-back converters has been achieved indirectly by controlling q-axis and d-axis current components. The main function of the RSC controllers is to track the maximum power through controlling the electromagnetic torque of the wind turbine. The GSC controls the DC-link voltage, and guarantees unity power factor between the GSC and the grid. The proposed system is developed and tested in MATLAB/SimPowerSystem (SPS) environment.


Sign in / Sign up

Export Citation Format

Share Document