scholarly journals Design, Analysis and Performance Evaluation of Fractional Order Proportional Integral for Three Interacting Tank Process in Frequency Domain considered as Third Order System

2015 ◽  
Vol 48 (30) ◽  
pp. 179-184
Author(s):  
U. Sabura Banu ◽  
Abdul Wahid Nasir
Author(s):  
Dazi Li ◽  
Xingyu He

Many processes in the industry can be modeled as fractional order, research on the fractional order become more and more popular. Usually, controllers such as fractional order PID (FOPID) or fractional active disturbance rejection control (FADRC) are used to control single-input-single-output (SISO) fractional order system. However, when it comes to fractional order two-input-two-output (TITO) processes, few research focus on this. In this paper, a new design method for fractional order control based on multivariable non-internal model control with inverted decoupling is proposed to handle non-integer order two-input-two-output system. The controller proposed in this paper just has two parameters to tune compared with the five parameters of the FOPID controller, and the controller structure can be achieved by internal model control (IMC) method which means it is easy to implement. The parameters tuning method used in this paper is based on frequency domain strategy. Compared with integer order situation, fractional order method is more complex, because the calculation of the frequency domain characteristics is difficult. The controller proposed in this paper is robust to process gain variations, what’s more, it provides ideal performance for both set point-tracking and disturbance rejection. Numerical results are given to show the performance of the proposed controller.


2014 ◽  
Vol 716-717 ◽  
pp. 1614-1619
Author(s):  
Rui Hao Xin ◽  
Chun Yang Wang ◽  
Xue Lian Liu ◽  
Ming Qiu Li ◽  
Duan Yuan Bai

In this paper, a new control method for large time delay system is proposed. Firstly, the decreasing time delay controller is used to remodel large delay time plant into small delay time plant. Then, a fractional robust proportional-integral controller (FOPI) is designed, using the phase margin and cut-off frequency at a specified point in the Bode plot of flat robust conditions, to guarantee the desired control performance and the robustness of the high order system to the gain order system. For comparison between the fractional order proportional integral controller and the traditional integer order PID (IOPID) controller, the IOPID controller is also designed following the same proposed tuning specifications. The simulation results indicates that the both designed controllers work efficiently. Furthermore, the FOPI controller makes the large time-delay system get better control effect, the system has high robustness, adaptive ability and anti-jamming ability.


2019 ◽  
Vol 27 (4) ◽  
pp. 417-430
Author(s):  
Rajesh Kannan Megalingam ◽  
Venkat Rangan ◽  
Pranav Veliyara ◽  
Rithun Raj Krishna ◽  
Raghavendra Prabhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document